Rajan Deepta, Thiagarajan Jayaraman J
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2571-2574. doi: 10.1109/EMBC.2018.8512757.
Processing temporal sequences is central to a variety of applications in health care, and in particular multichannel Electrocardiogram (ECG) is a highly prevalent diagnostic modality that relies on robust sequence modeling. While Recurrent Neural Networks (RNNs) have led to significant advances in automated diagnosis with time-series data, they perform poorly when models are trained using a limited set of channels. A crucial limitation of existing solutions is that they rely solely on discriminative models, which tend to generalize poorly in such scenarios. In order to combat this limitation, we develop a generative modeling approach to limited channel ECG classification. This approach first uses a Seq2Seq model to implicitly generate the missing channel information, and then uses the latent representation to perform the actual supervisory task. This decoupling enables the use of unsupervised data and also provides highly robust metric spaces for subsequent discriminative learning. Our experiments with the Physionet dataset clearly evidence the effectiveness of our approach over standard RNNs in disease prediction.
处理时间序列是医疗保健中各种应用的核心,特别是多通道心电图(ECG)是一种高度普遍的诊断方式,它依赖于强大的序列建模。虽然循环神经网络(RNN)在利用时间序列数据进行自动诊断方面取得了重大进展,但当使用有限的通道集训练模型时,它们的表现很差。现有解决方案的一个关键限制是它们仅依赖判别模型,而判别模型在这种情况下往往泛化能力较差。为了克服这一限制,我们开发了一种用于有限通道心电图分类的生成建模方法。该方法首先使用序列到序列(Seq2Seq)模型隐式生成缺失的通道信息,然后使用潜在表示来执行实际的监督任务。这种解耦使得能够使用无监督数据,并且还为后续的判别学习提供了高度鲁棒的度量空间。我们使用Physionet数据集进行的实验清楚地证明了我们的方法在疾病预测方面优于标准RNN的有效性。