Kopf Andreas, Claassen Manfred
Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
Division of Clinical Bioinformatics, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany.
Patterns (N Y). 2021 Mar 12;2(3):100198. doi: 10.1016/j.patter.2021.100198.
Current data generation capabilities in the life sciences render scientists in an apparently contradicting situation. While it is possible to simultaneously measure an ever-increasing number of systems parameters, the resulting data are becoming increasingly difficult to interpret. Latent variable modeling allows for such interpretation by learning non-measurable hidden variables from observations. This review gives an overview over the different formal approaches to latent variable modeling, as well as applications at different scales of biological systems, such as molecular structures, intra- and intercellular regulatory up to physiological networks. The focus is on demonstrating how these approaches have enabled interpretable representations and ultimately insights in each of these domains. We anticipate that a wider dissemination of latent variable modeling in the life sciences will enable a more effective and productive interpretation of studies based on heterogeneous and high-dimensional data modalities.
生命科学领域当前的数据生成能力使科学家们处于一种明显矛盾的境地。虽然可以同时测量越来越多的系统参数,但由此产生的数据却越来越难以解释。潜在变量建模通过从观测值中学习不可测量的隐藏变量来实现这种解释。本综述概述了潜在变量建模的不同形式方法,以及在生物系统不同尺度上的应用,如分子结构、细胞内和细胞间调控直至生理网络。重点在于展示这些方法如何在每个领域实现可解释的表示并最终带来深入理解。我们预计,潜在变量建模在生命科学领域的更广泛传播将使基于异构和高维数据模式的研究得到更有效和高效的解释。