Suppr超能文献

使用多元自回归模型估算脑电图中的缺失值。

Imputing Missing Values in EEG with Multivariate Autoregressive Models.

作者信息

Kanemura Atsunori, Cheng Yuhsen, Kaneko Takumi, Nozawa Kento, Fukunaga Shuichi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2639-2642. doi: 10.1109/EMBC.2018.8512790.

Abstract

Wearable measurement for electroencephalogram (EEG) is expected to enable brain-computer interfaces, biomedical engineering, and neuroscience studies in real environments. When wearable devices are in practical use, only the user (subject) can take care of measurement, unlike laboratory- oriented experiments, where experimenters are always with the subject. As a result, measurement troubles such as artifact contamination or electrode impairment cannot be easily corrected, and EEG recordings will become incomplete, including many missing values. If the missing values are imputed (interpolated) and complete data without missing entries are available, we can employ existing signal analysis techniques that assume compete data. In this paper, we propose an EEG signal imputation method based on multivariate autoregressive (MAR) modeling and its iterative estimation and simulation, inspired by the multiple imputation procedure. We evaluated the proposed method with real data with artificial missing entries. Experimental results show that the proposed method outperforms popular baseline interpolation methods. Our iterative scheme is simple yet effective, and can be the foundation for many extensions.

摘要

可穿戴式脑电图(EEG)测量有望在实际环境中实现脑机接口、生物医学工程和神经科学研究。与面向实验室的实验不同,在实验室实验中实验人员始终与受试者在一起,而当可穿戴设备实际使用时,只有用户(受试者)能够进行测量。因此,诸如伪迹污染或电极损坏等测量问题无法轻易纠正,脑电图记录将变得不完整,包括许多缺失值。如果对缺失值进行插补(内插)并获得没有缺失条目的完整数据,我们就可以采用现有的假设数据完整的信号分析技术。在本文中,受多重插补程序的启发,我们提出了一种基于多元自回归(MAR)建模及其迭代估计和模拟的脑电图信号插补方法。我们使用带有人工缺失条目的真实数据对所提出的方法进行了评估。实验结果表明,所提出的方法优于流行的基线插值方法。我们的迭代方案简单而有效,可以作为许多扩展的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验