Suppr超能文献

用于可靠且自动去除 EEG 中的眼动和肌肉伪迹的低复杂度硬件设计方法。

Low-complexity hardware design methodology for reliable and automated removal of ocular and muscular artifact from EEG.

机构信息

Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India.

School of Electronic & Computer Science, University of Southampton, Southampton, UK.

出版信息

Comput Methods Programs Biomed. 2018 May;158:123-133. doi: 10.1016/j.cmpb.2018.02.009. Epub 2018 Feb 7.

Abstract

BACKGROUND AND OBJECTIVE

EEG is a non-invasive tool for neuro-developmental disorder diagnosis and treatment. However, EEG signal is mixed with other biological signals including Ocular and Muscular artifacts making it difficult to extract the diagnostic features. Therefore, the contaminated EEG channels are often discarded by the medical practitioners which may result in less accurate diagnosis. Many existing methods require reference electrodes, which will create discomfort to the patient/children and cause hindrance to the diagnosis of the neuro-developmental disorder and Brain Computer Interface in the pervasive environment. Therefore, it would be ideal if these artifacts can be removed real time on the hardware platform in an automated fashion and then the denoised EEG can be used for online diagnosis in a pervasive personalized healthcare environment without the need of any reference electrode.

METHODS

In this paper we propose a reliable, robust and automated methodology to solve the aforementioned problem. The proposed methodology is based on the Haar function based Wavelet decompositions with simple threshold based wavelet domain denoising and artifacts removal schemes. Subsequently hardware implementation results are also presented. 100 EEG data from Physionet, Klinik für Epileptologie, Universität Bonn, Germany, Caltech EEG databases and 7 EEG data from 3 subjects from University of Southampton, UK have been studied and nine exhaustive case studies comprising of real and simulated data have been formulated and tested. The proposed methodology is prototyped and validated using FPGA platform.

RESULTS

Like existing literature, the performance of the proposed methodology is also measured in terms of correlation, regression and R-square statistics and the respective values lie above 80%, 79% and 65% with the gain in hardware complexity of 64.28% and improvement in hardware delay of 53.58% compared to state-of-the art approaches. Hardware design based on the proposed methodology consumes 75 micro-Watt power.

CONCLUSIONS

The automated methodology proposed in this paper, unlike the state of the art methods, can remove blink and muscular artifacts real time without the need of any extra electrode. Its reliability and robustness is also established after exhaustive simulation study and analysis on both simulated and real data. We believe the proposed methodology would be useful in next generation personalized pervasive healthcare for Brain Computer Interface and neuro-developmental disorder diagnosis and treatment.

摘要

背景与目的

脑电图(EEG)是一种用于神经发育障碍诊断和治疗的非侵入性工具。然而,脑电图信号与其他生物信号(包括眼动和肌肉伪迹)混合在一起,使得很难提取诊断特征。因此,医疗从业者经常会丢弃受污染的脑电图通道,这可能导致诊断不够准确。许多现有的方法都需要参考电极,这会给患者/儿童带来不适,并阻碍神经发育障碍和脑机接口在普及环境中的诊断。因此,如果这些伪迹能够实时在硬件平台上以自动化的方式去除,然后使用去噪后的脑电图在无需任何参考电极的普及个性化医疗保健环境中进行在线诊断,那将是理想的。

方法

在本文中,我们提出了一种可靠、鲁棒且自动化的方法来解决上述问题。所提出的方法基于基于 Haar 函数的小波分解,以及简单的基于阈值的小波域去噪和伪迹去除方案。随后还给出了硬件实现结果。研究了来自 Physionet、德国波恩大学 Klinik für Epileptologie、加州理工学院 EEG 数据库以及来自英国南安普顿大学的 3 名受试者的 7 个 EEG 数据,并进行了 9 项详尽的案例研究,包括真实和模拟数据。该方法采用 FPGA 平台进行原型设计和验证。

结果

与现有文献一样,所提出方法的性能也通过相关系数、回归和 R 平方统计来衡量,相应的值高于 80%、79%和 65%,与最先进方法相比,硬件复杂度提高了 64.28%,硬件延迟提高了 53.58%。基于所提出方法的硬件设计消耗 75 微瓦功率。

结论

与现有技术方法不同,本文提出的自动化方法无需额外电极即可实时去除眨眼和肌肉伪迹。经过对模拟和真实数据的详尽仿真研究和分析,也验证了其可靠性和鲁棒性。我们相信,所提出的方法将有助于下一代个性化普及医疗保健中的脑机接口和神经发育障碍诊断和治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验