Suppr超能文献

一种使用智能手机传感器数据远程检测帕金森病的深度学习框架。

A Deep Learning Framework for the Remote Detection of Parkinson'S Disease Using Smart-Phone Sensor Data.

作者信息

Prince John, de Vos Maarten

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3144-3147. doi: 10.1109/EMBC.2018.8512972.

Abstract

The assessment of Parkinson's disease (PD) using wearable sensors in non-clinical environments presents an opportunity for objective disease classification and severity prediction on a high-frequency and longitudinal basis. However, many challenges exist in analysing remotely collected data due to many sources of data corruption. Using a cohort of 1,815 participants (866 controls and 949 with PD) we implement a range of classification algorithms on Alternate Finger Tapping test data collected on smart-phones in remote environments. We compare the disease classification ability of two traditional machine learning methods against two state-of-the-art deep learning approaches, determining if the latter is successful without the definition of an explicit feature set. We find the deep learning approaches capable of disease classification, often outperforming traditional methods. We show similarities between the participants successfully classified through use of a manually extracted feature set, and the features learnt by a convolutional neural network. Finally, we discuss the broader challenges of analysing remotely collected datasets whilst highlighting the suitability of deep learning for assessing PD when large participant numbers are available.

摘要

在非临床环境中使用可穿戴传感器评估帕金森病(PD)为高频和纵向的客观疾病分类及严重程度预测提供了契机。然而,由于存在许多数据损坏源,在分析远程收集的数据时存在诸多挑战。我们使用一个由1815名参与者(866名对照者和949名帕金森病患者)组成的队列,对在远程环境中通过智能手机收集的交替手指敲击测试数据实施了一系列分类算法。我们将两种传统机器学习方法的疾病分类能力与两种最先进的深度学习方法进行比较,以确定后者在未定义显式特征集的情况下是否成功。我们发现深度学习方法能够进行疾病分类,且往往优于传统方法。我们展示了通过使用手动提取的特征集成功分类的参与者与卷积神经网络学习到的特征之间的相似性。最后,我们讨论了分析远程收集的数据集所面临的更广泛挑战,同时强调了在有大量参与者时深度学习对于评估帕金森病的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验