文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于智能手机的手部功能评估:系统评价

Smartphone-Based Hand Function Assessment: Systematic Review.

作者信息

Fu Yan, Zhang Yuxin, Ye Bing, Babineau Jessica, Zhao Yan, Gao Zhengke, Mihailidis Alex

机构信息

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.

出版信息

J Med Internet Res. 2024 Sep 16;26:e51564. doi: 10.2196/51564.


DOI:10.2196/51564
PMID:39283676
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11443181/
Abstract

BACKGROUND: Hand function assessment heavily relies on specific task scenarios, making it challenging to ensure validity and reliability. In addition, the wide range of assessment tools, limited and expensive data recording, and analysis systems further aggravate the issue. However, smartphones provide a promising opportunity to address these challenges. Thus, the built-in, high-efficiency sensors in smartphones can be used as effective tools for hand function assessment. OBJECTIVE: This review aims to evaluate existing studies on hand function evaluation using smartphones. METHODS: An information specialist searched 8 databases on June 8, 2023. The search criteria included two major concepts: (1) smartphone or mobile phone or mHealth and (2) hand function or function assessment. Searches were limited to human studies in the English language and excluded conference proceedings and trial register records. Two reviewers independently screened all studies, with a third reviewer involved in resolving discrepancies. The included studies were rated according to the Mixed Methods Appraisal Tool. One reviewer extracted data on publication, demographics, hand function types, sensors used for hand function assessment, and statistical or machine learning (ML) methods. Accuracy was checked by another reviewer. The data were synthesized and tabulated based on each of the research questions. RESULTS: In total, 46 studies were included. Overall, 11 types of hand dysfunction-related problems were identified, such as Parkinson disease, wrist injury, stroke, and hand injury, and 6 types of hand dysfunctions were found, namely an abnormal range of motion, tremors, bradykinesia, the decline of fine motor skills, hypokinesia, and nonspecific dysfunction related to hand arthritis. Among all built-in smartphone sensors, the accelerometer was the most used, followed by the smartphone camera. Most studies used statistical methods for data processing, whereas ML algorithms were applied for disease detection, disease severity evaluation, disease prediction, and feature aggregation. CONCLUSIONS: This systematic review highlights the potential of smartphone-based hand function assessment. The review suggests that a smartphone is a promising tool for hand function evaluation. ML is a conducive method to classify levels of hand dysfunction. Future research could (1) explore a gold standard for smartphone-based hand function assessment and (2) take advantage of smartphones' multiple built-in sensors to assess hand function comprehensively, focus on developing ML methods for processing collected smartphone data, and focus on real-time assessment during rehabilitation training. The limitations of the research are 2-fold. First, the nascent nature of smartphone-based hand function assessment led to limited relevant literature, affecting the evidence's completeness and comprehensiveness. This can hinder supporting viewpoints and drawing conclusions. Second, literature quality varies due to the exploratory nature of the topic, with potential inconsistencies and a lack of high-quality reference studies and meta-analyses.

摘要

背景:手部功能评估严重依赖于特定的任务场景,这使得确保有效性和可靠性具有挑战性。此外,评估工具种类繁多、数据记录有限且昂贵以及分析系统进一步加剧了这一问题。然而,智能手机为应对这些挑战提供了一个有前景的机会。因此,智能手机中内置的高效传感器可用作手部功能评估的有效工具。 目的:本综述旨在评估使用智能手机进行手部功能评估的现有研究。 方法:一名信息专家于2023年6月8日检索了8个数据库。检索标准包括两个主要概念:(1)智能手机或移动电话或移动健康,以及(2)手部功能或功能评估。检索限于英文的人体研究,排除会议论文集和试验注册记录。两名评审员独立筛选所有研究,第三名评审员参与解决分歧。纳入的研究根据混合方法评估工具进行评分。一名评审员提取关于发表情况、人口统计学、手部功能类型、用于手部功能评估的传感器以及统计或机器学习(ML)方法的数据。另一名评审员检查准确性。根据每个研究问题对数据进行综合和制表。 结果:总共纳入了46项研究。总体而言,确定了11种与手部功能障碍相关的问题,如帕金森病、手腕损伤、中风和手部损伤,还发现了6种手部功能障碍,即运动范围异常、震颤、运动迟缓、精细运动技能下降、运动减退以及与手部关节炎相关的非特异性功能障碍。在所有内置智能手机传感器中,加速度计使用最为频繁,其次是智能手机摄像头。大多数研究使用统计方法进行数据处理,而ML算法则应用于疾病检测、疾病严重程度评估、疾病预测和特征聚合。 结论:本系统综述突出了基于智能手机的手部功能评估的潜力。该综述表明智能手机是手部功能评估的一个有前景的工具。ML是一种有助于对手部功能障碍水平进行分类的方法。未来的研究可以(1)探索基于智能手机的手部功能评估的金标准,以及(2)利用智能手机的多个内置传感器全面评估手部功能,专注于开发用于处理收集到的智能手机数据的ML方法,并专注于康复训练期间的实时评估。该研究的局限性有两方面。首先,基于智能手机的手部功能评估尚处于初期阶段,导致相关文献有限,影响了证据的完整性和全面性。这可能会阻碍支持观点和得出结论。其次,由于该主题的探索性质,文献质量参差不齐,可能存在不一致之处,并且缺乏高质量的参考研究和荟萃分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5f/11443181/553e0e71025c/jmir_v26i1e51564_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5f/11443181/a4cc4976f3ba/jmir_v26i1e51564_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5f/11443181/553e0e71025c/jmir_v26i1e51564_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5f/11443181/a4cc4976f3ba/jmir_v26i1e51564_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5f/11443181/553e0e71025c/jmir_v26i1e51564_fig2.jpg

相似文献

[1]
Smartphone-Based Hand Function Assessment: Systematic Review.

J Med Internet Res. 2024-9-16

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[4]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[6]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[7]
Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia.

Cochrane Database Syst Rev. 2015-6-23

[8]
Technology-Based Compensation Assessment and Detection of Upper Extremity Activities of Stroke Survivors: Systematic Review.

J Med Internet Res. 2022-6-13

[9]
The effectiveness of using non-traditional teaching methods to prepare student health care professionals for the delivery of mental state examination: a systematic review.

JBI Database System Rev Implement Rep. 2015-8-14

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

本文引用的文献

[1]
Ethical issues when using digital biomarkers and artificial intelligence for the early detection of dementia.

Wiley Interdiscip Rev Data Min Knowl Discov. 2023

[2]
A short-term manual for webcam-based telemedicine treatment of Internet use disorders.

Front Psychiatry. 2023-2-23

[3]
Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures.

NPJ Digit Med. 2023-3-6

[4]
The use of mobile apps and fitness trackers to promote healthy behaviors during COVID-19: A cross-sectional survey.

PLOS Digit Health. 2022-8-18

[5]
Automatic range of motion measurement via smartphone images for telemedicine examination of the hand.

Sci Prog. 2023

[6]
Automatic detection of abnormal hand gestures in patients with radial, ulnar, or median nerve injury using hand pose estimation.

Front Neurol. 2022-12-7

[7]
Technology-Based Compensation Assessment and Detection of Upper Extremity Activities of Stroke Survivors: Systematic Review.

J Med Internet Res. 2022-6-13

[8]
Quantitative Assessment of Hand Function in Healthy Subjects and Post-Stroke Patients with the Action Research Arm Test.

Sensors (Basel). 2022-5-10

[9]
Diagnostic accuracy of keystroke dynamics as digital biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review and meta-analysis.

Sci Rep. 2022-5-11

[10]
A multicentre validation study of a smartphone application to screen hand arthritis.

BMC Musculoskelet Disord. 2022-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索