Suppr超能文献

通过语音活动检测器监督的多次噪声注入对助听器中的声反馈路径进行高效建模。

Efficient Modeling of Acoustic Feedback Path in Hearing Aids by Voice Activity Detector-Supervised Multiple Noise Injections.

作者信息

Mishra Parth, Tokgoz Serkan, Panahi Issa M S

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3549-3552. doi: 10.1109/EMBC.2018.8513007.

Abstract

Adaptive Feedback Cancellation (AFC) techniques are widely used to eliminate the undesired acoustic feedback effect arising in the Hearing Aid Devices (HADs) due to the coupling between the speaker and the microphone of the HAD. This paper proposes a method to eliminate the acoustic feedback effect in the HADs in presence of noisy environment. The method involves utilization of a computationally efficient Spectral Flux feature-based voice activity detector (VAD), which controls the process of Noise Injection in the proposed AFC algorithm (SFNIAFC). The proposed algorithm's performance is objectively evaluated using Misalignment (MISA) and Perceptual Evaluation of Speech Quality (PESQ) criteria for realistic noisy conditions. The simulations performed for the proposed method shows faster convergence and reduction in the MISA values with high PESQ values in comparison to the earlier method. Subjective test results support the effectiveness and better performance of the proposed algorithm for the HAD applications over earlier method.

摘要

自适应反馈消除(AFC)技术被广泛用于消除助听器(HAD)中由于扬声器与麦克风耦合而产生的不良声反馈效应。本文提出了一种在存在噪声环境的情况下消除助听器中声反馈效应的方法。该方法涉及使用一种计算效率高的基于谱通量特征的语音活动检测器(VAD),它控制所提出的AFC算法(SFNIAFC)中的噪声注入过程。针对实际噪声条件,使用失配(MISA)和语音质量感知评估(PESQ)标准对所提出算法的性能进行客观评估。与早期方法相比,对所提出方法进行的仿真显示出更快的收敛速度和更低的MISA值以及更高的PESQ值。主观测试结果支持所提出算法在助听器应用方面比早期方法更有效且性能更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验