Suppr超能文献

稳定性控制的混合自适应反馈消除方案在助听器中的应用。

Stability-controlled hybrid adaptive feedback cancellation scheme for hearing aids.

机构信息

Department of Electrical and Computer Engineering, Curtin University, Perth, WA, 6102, Australia.

Signal Processing Group, Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4All," University of Oldenburg, Oldenburg, Germany.

出版信息

J Acoust Soc Am. 2018 Jan;143(1):150. doi: 10.1121/1.5020269.

Abstract

Adaptive feedback cancellation (AFC) techniques are common in modern hearing aid devices (HADs) since these techniques have been successful in increasing the stable gain. Accordingly, there has been a significant effort to improve AFC technology, especially for open-fitting and in-ear HADs, for which howling is more prevalent due to the large acoustic coupling between the loudspeaker and the microphone. In this paper, the authors propose a hybrid AFC (H-AFC) scheme that is able to shorten the time it takes to recover from howling. The proposed H-AFC scheme consists of a switched combination adaptive filter, which is controlled by a soft-clipping-based stability detector to select either the standard normalized least mean squares (NLMS) algorithm or the prediction-error-method (PEM) NLMS algorithm to update the adaptive filter. The standard NLMS algorithm is used to obtain fast convergence, while the PEM-NLMS algorithm is used to provide a low bias solution. This stability-controlled adaptation is hence the means to improve performance in terms of both convergence rate as well as misalignment, while only slightly increasing computational complexity. The proposed H-AFC scheme has been evaluated for both speech and music signals, resulting in a significantly improved convergence and re-convergence rate, i.e., a shorter howling period, as well as a lower average misalignment and a larger added stable gain compared to using either the NLMS or the PEM-NLMS algorithm alone. An objective evaluation using the perceptual evaluation of speech quality and the perceptual evaluation of audio quality measures shows that the proposed H-AFC scheme provides very high-quality speech and music signals. This has also been verified through a subjective listening experiment with N = 15 normal-hearing subjects using a multi-stimulus test with hidden reference and anchor, showing that the proposed H-AFC scheme results in a better perceptual quality than the state-of-the-art PEM-NLMS algorithm.

摘要

自适应反馈消除 (AFC) 技术在现代助听器设备 (HAD) 中很常见,因为这些技术在增加稳定增益方面已经取得了成功。因此,人们一直在努力改进 AFC 技术,特别是对于开放式和入耳式 HAD,由于扬声器和麦克风之间的声耦合较大,因此更容易出现啸叫。在本文中,作者提出了一种混合 AFC (H-AFC) 方案,该方案能够缩短从啸叫中恢复所需的时间。所提出的 H-AFC 方案由一个开关组合自适应滤波器组成,该滤波器由基于软削波的稳定性检测器控制,以选择标准归一化最小均方算法 (NLMS) 或预测误差方法 (PEM) NLMS 算法来更新自适应滤波器。标准 NLMS 算法用于获得快速收敛,而 PEM-NLMS 算法用于提供低偏差解决方案。因此,这种稳定性控制的自适应是提高收敛速度和失配的性能的手段,同时仅略微增加计算复杂度。已经针对语音和音乐信号评估了所提出的 H-AFC 方案,结果表明,与单独使用 NLMS 或 PEM-NLMS 算法相比,收敛和再收敛速度显著提高,即啸叫周期更短,平均失配更低,附加稳定增益更大。使用语音质量感知评估和音频质量感知评估的客观评估表明,所提出的 H-AFC 方案提供了非常高质量的语音和音乐信号。通过 15 名正常听力受试者的主观听力实验也验证了这一点,该实验使用隐藏参考和锚的多刺激测试进行,结果表明,所提出的 H-AFC 方案比最先进的 PEM-NLMS 算法产生更好的感知质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验