Rathee Dheeraj, Cecotti Hubert, Prasad Girijesh
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5093-5096. doi: 10.1109/EMBC.2018.8513417.
Recent progress in the number of studies involving brain connectivity analysis of motor imagery (MI) tasks for brain-computer interface (BCI) systems has warranted the need for pre-processing methods. The objective of this study is to evaluate the impact of current source density (CSD) estimation from raw electroencephalogram (EEG) signals on the classification performance of scalp level brain connectivity feature based MI-BCI. In particular, time-domain partial Granger causality (PGC) method was implemented on the raw EEG signals and CSD signals of a publicly available dataset for the estimation of brain connectivity features. Moreover, pairwise binary classifications of four different MI tasks were performed in inter-session and intra-session conditions using a support vector machine classifier. The results showed that CSD provided a statistically significant increase of the AUC: 20.28% in the inter-session condition; 12.54% and 13.92% with session 01 and session 02, respectively, in the intra-session condition. These results show that pre-processing of EEG signals is crucial for single-trial connectivity features based MI-BCI systems and CSD can enhance their overall performance.
近年来,针对脑机接口(BCI)系统的运动想象(MI)任务进行脑连接分析的研究数量不断增加,这使得对预处理方法的需求变得十分必要。本研究的目的是评估从原始脑电图(EEG)信号估计电流源密度(CSD)对基于头皮水平脑连接特征的MI-BCI分类性能的影响。具体而言,在一个公开可用数据集的原始EEG信号和CSD信号上实施时域偏格兰杰因果关系(PGC)方法,以估计脑连接特征。此外,使用支持向量机分类器在会话间和会话内条件下对四种不同的MI任务进行成对二元分类。结果表明,CSD在会话间条件下使曲线下面积(AUC)有统计学意义的显著增加:增加了20.28%;在会话内条件下,分别使会话01和会话02的AUC增加了12.54%和13.92%。这些结果表明,EEG信号的预处理对于基于单试次连接特征的MI-BCI系统至关重要,并且CSD可以提高其整体性能。