School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.
Comput Biol Med. 2019 Apr;107:118-126. doi: 10.1016/j.compbiomed.2019.02.009. Epub 2019 Feb 19.
In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.
在基于运动想象 (MI) 的脑机接口 (BCI) 信号分析中,由于脑电图 (EEG) 的 mu 和 beta 节律具有较高的时间分辨率和分别定义不同运动相关心理任务的能力,因此它们被广泛研究。然而,由于 EEG 特征的高维度和主体特异性行为,需要一种合适的特征选择算法,该算法可以选择最佳特征,同时提高计算效率,从而获得最佳分类性能。本研究提出了一种基于邻域成分分析 (NCA) 的特征选择算法,并对正则化参数进行了修改。在实验中,使用双树复小波变换 (DTCWT) 提取 EEG 的时间、频率和相位特征。之后,所提出的算法选择最显著的 EEG 特征,并使用这些选择的特征,支持向量机 (SVM) 分类器对 MI 信号进行分类。该算法已在两个公共 BCI 数据集 (BCI 竞赛 II 数据集 III 和 BCI 竞赛 IV 数据集 2b) 上进行了实验验证。通过平均准确率和 kappa 系数来量化算法的分类性能,其值分别为 80.7%和 0.615。与基于遗传算法 (GA)、主成分分析 (PCA) 和 ReliefF 的标准特征选择方法相比,所提出的算法性能更好。此外,所提出的算法选择的特征数量最少,计算效率更高,因此它是一种很有前途的 MI 基 BCI 系统的特征选择工具。