Suppr超能文献

利用平均垂直速度和海拔高度差,基于躯干惯性和气压测量改进自动跌倒检测

Use of Average Vertical Velocity and Difference in Altitude for Improving Automatic Fall Detection from Trunk Based Inertial and Barometric Pressure Measurements.

作者信息

Musngi Magnus M, Aziz Omar, Zihajehzadeh Shaghayegh, Nazareth Ginelle C, Tae Chul-Gyu, Park Edward J

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5146-5149. doi: 10.1109/EMBC.2018.8513482.

Abstract

Despite the extensive research that has been carried out on automatic fall detection using wearable sensors, falls in the elderly cannot be detected effectively yet. Although recent fall detection algorithms that evaluate the descent, impact and post impact phases of falls, often using vertical velocity, vertical acceleration and trunk angle respectively, tend to be more accurate than the algorithms that do not consider them, they still lack the desired accuracy required to be used among frail older adults. This study aims to improve the accuracy of fall detection algorithms by incorporating average vertical velocity and difference in altitude as additional parameters to the vertical velocity, vertical acceleration and trunk angle parameters. We tested the proposed algorithms on data recorded from a comprehensive set of falling experiments with 12 young participants. Participants wore waist-mounted accelerometer, gyroscope and barometric pressure sensors and simulated the most common types of falls observed in older adults, along with near-falls and activities of daily living (ADLs). Our results showed that, while the base algorithm with the three parameters provided 91.8% specificity, the addition of difference in altitude and average vertical velocity improved the specificity to 98.0% and 99.6%, respectively.

摘要

尽管已经对使用可穿戴传感器进行自动跌倒检测开展了广泛研究,但仍无法有效检测出老年人的跌倒情况。虽然最近的跌倒检测算法会分别使用垂直速度、垂直加速度和躯干角度来评估跌倒的下降、撞击和撞击后阶段,往往比不考虑这些因素的算法更准确,但它们仍缺乏在体弱老年人中使用所需的理想精度。本研究旨在通过将平均垂直速度和高度差作为垂直速度、垂直加速度和躯干角度参数的附加参数纳入跌倒检测算法,提高算法的准确性。我们在12名年轻参与者的一组全面跌倒实验记录的数据上测试了所提出的算法。参与者佩戴了腰部安装的加速度计、陀螺仪和气压传感器,并模拟了老年人中最常见的跌倒类型以及险些跌倒和日常生活活动(ADL)。我们的结果表明,虽然具有这三个参数的基础算法特异性为91.8%,但添加高度差和平均垂直速度后,特异性分别提高到了98.0%和99.6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验