Suppr超能文献

用于神经树突形态生成的分支率的点过程滤波估计

Point Process Filtering Estimates of Branching Rate for Neural Dendritic Morphology Generation.

作者信息

Chou Zane Z, Yu Gene J, Berger Theodore W

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5854-5857. doi: 10.1109/EMBC.2018.8513682.

Abstract

Current parametric approaches to dendritic morphology generation are limited in their ability to replicate realistic branching. A non-parametric approach applying a point process filter and the expectation-maximization algorithm offers a data-based solution that estimates the dendritic branching rate based on observations of bifurcation events in real neurons. Point processes can then be simulated using this branching rate estimate to indicate when a generated morphology should branch. Morphologies generated using this technique match both basic and emergent property distributions of the real neurons used as input into the algorithm. Further refinement of branching angles will allow for a flexible tool to generate realistic morphologies of a variety of neuronal stereotypes.

摘要

当前用于生成树突形态的参数化方法在复制逼真分支方面能力有限。一种应用点过程滤波器和期望最大化算法的非参数化方法提供了一种基于数据的解决方案,该方案基于对真实神经元中分叉事件的观察来估计树突分支率。然后可以使用这种分支率估计来模拟点过程,以指示生成的形态何时应该分支。使用该技术生成的形态与作为算法输入的真实神经元的基本属性分布和涌现属性分布均相匹配。对分支角度的进一步优化将产生一种灵活的工具,用于生成各种神经元类型的逼真形态。

相似文献

1
Point Process Filtering Estimates of Branching Rate for Neural Dendritic Morphology Generation.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5854-5857. doi: 10.1109/EMBC.2018.8513682.
2
NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies.
Neuroinformatics. 2009 Sep;7(3):195-210. doi: 10.1007/s12021-009-9052-3. Epub 2009 Aug 12.
3
Generation of Granule Cell Dendritic Morphologies by Estimating the Spatial Heterogeneity of Dendritic Branching.
Front Comput Neurosci. 2020 Apr 9;14:23. doi: 10.3389/fncom.2020.00023. eCollection 2020.
4
Competitive interactions during dendritic growth: a simple stochastic growth algorithm.
Brain Res. 1992 Mar 27;576(1):152-6. doi: 10.1016/0006-8993(92)90622-g.
5
Generation, description and storage of dendritic morphology data.
Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1131-45. doi: 10.1098/rstb.2001.0905.
6
A regularity index for dendrites - local statistics of a neuron's input space.
PLoS Comput Biol. 2018 Nov 12;14(11):e1006593. doi: 10.1371/journal.pcbi.1006593. eCollection 2018 Nov.
7
A new approach to reconstruction models of dendritic branching patterns.
Math Biosci. 2007 Feb;205(2):271-96. doi: 10.1016/j.mbs.2006.08.005. Epub 2006 Aug 22.
8
A parsimonious description of motoneuron dendritic morphology using computer simulation.
J Neurosci. 1992 Jun;12(6):2403-16. doi: 10.1523/JNEUROSCI.12-06-02403.1992.
9
10
Hypothesis testing for neural cell growth experiments using a hybrid branching process model.
Biostatistics. 2010 Oct;11(4):631-43. doi: 10.1093/biostatistics/kxq038. Epub 2010 Jun 3.

本文引用的文献

1
Self-referential forces are sufficient to explain different dendritic morphologies.
Front Neuroinform. 2013 Jan 30;7:1. doi: 10.3389/fninf.2013.00001. eCollection 2013.
2
Toward a full-scale computational model of the rat dentate gyrus.
Front Neural Circuits. 2012 Nov 16;6:83. doi: 10.3389/fncir.2012.00083. eCollection 2012.
3
Neural population partitioning and a concurrent brain-machine interface for sequential motor function.
Nat Neurosci. 2012 Dec;15(12):1715-22. doi: 10.1038/nn.3250. Epub 2012 Nov 11.
4
Dendritic structural plasticity.
Dev Neurobiol. 2012 Jan;72(1):73-86. doi: 10.1002/dneu.20951.
5
NeuroMorpho.Org: a central resource for neuronal morphologies.
J Neurosci. 2007 Aug 29;27(35):9247-51. doi: 10.1523/JNEUROSCI.2055-07.2007.
6
Estimating a state-space model from point process observations.
Neural Comput. 2003 May;15(5):965-91. doi: 10.1162/089976603765202622.
7
The time-rescaling theorem and its application to neural spike train data analysis.
Neural Comput. 2002 Feb;14(2):325-46. doi: 10.1162/08997660252741149.
8
Computer generation and quantitative morphometric analysis of virtual neurons.
Anat Embryol (Berl). 2001 Oct;204(4):283-301. doi: 10.1007/s004290100201.
9
How do dendrites take their shape?
Nat Neurosci. 2001 Apr;4(4):359-65. doi: 10.1038/86006.
10
Untangling dendrites with quantitative models.
Science. 2000 Oct 27;290(5492):744-50. doi: 10.1126/science.290.5492.744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验