Chou Zane Z, Yu Gene J, Berger Theodore W
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5854-5857. doi: 10.1109/EMBC.2018.8513682.
Current parametric approaches to dendritic morphology generation are limited in their ability to replicate realistic branching. A non-parametric approach applying a point process filter and the expectation-maximization algorithm offers a data-based solution that estimates the dendritic branching rate based on observations of bifurcation events in real neurons. Point processes can then be simulated using this branching rate estimate to indicate when a generated morphology should branch. Morphologies generated using this technique match both basic and emergent property distributions of the real neurons used as input into the algorithm. Further refinement of branching angles will allow for a flexible tool to generate realistic morphologies of a variety of neuronal stereotypes.
当前用于生成树突形态的参数化方法在复制逼真分支方面能力有限。一种应用点过程滤波器和期望最大化算法的非参数化方法提供了一种基于数据的解决方案,该方案基于对真实神经元中分叉事件的观察来估计树突分支率。然后可以使用这种分支率估计来模拟点过程,以指示生成的形态何时应该分支。使用该技术生成的形态与作为算法输入的真实神经元的基本属性分布和涌现属性分布均相匹配。对分支角度的进一步优化将产生一种灵活的工具,用于生成各种神经元类型的逼真形态。