Ascoli G A, Krichmar J L, Scorcioni R, Nasuto S J, Senft S L
Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030-4444, USA.
Anat Embryol (Berl). 2001 Oct;204(4):283-301. doi: 10.1007/s004290100201.
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
计算神经解剖学的一个重要目标是对神经元形态进行完整且准确的模拟。我们正在开发基于随机规则集对三维树突结构进行建模的计算工具。本文报告了对模拟运动神经元和浦肯野细胞的广泛、定量的解剖学特征描述。我们使用了在L-Neuron和ArborVitae程序中实现的几种局部和全局算法来生成虚拟神经元集。所有算法的参数统计均根据实验数据进行测量,从而对这些形态学类别提供了简洁且一致的描述。我们将每组虚拟神经元的新出现的解剖学特征与实验数据库的特征进行比较,以便深入了解模型假设的合理性、算法的潜在改进以及形态学参数之间的重要关系。主要基于局部约束(例如分支直径)的算法成功地再现了运动神经元和浦肯野细胞的许多形态学特性(例如总长度、不对称性、分支数量)。添加全局约束(例如营养因子)改善了与角度相关的新出现的特征(从胞体到树突末梢的平均欧几里得距离、树突扩展)。虚拟神经元系统地表现出比真实细胞更大的解剖学变异性,这表明模型中需要额外的约束。对于几种新出现的解剖学特性,一种特定算法比其他算法能更好地再现实验统计数据。然而,对于不同的解剖学特性和/或形态学类别,相对性能往往会颠倒。因此,结合替代生成模型的优势可能会产生用于完整且准确模拟树突形态的综合算法。