Suppr超能文献

临床环境中获取的视网膜眼底图像中疟疾性视网膜病变的自动检测。

Automated Detection of Malarial Retinopathy in Retinal Fundus Images obtained in Clinical Settings.

作者信息

Joshi Vinayak, Wigdahl Jeffery, Nemeth Sheila, Manda Chatonda, Lewallen Susan, Taylor Terrie, MacCormick Ian, Harding Simon, Soliz Peter

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5950-5953. doi: 10.1109/EMBC.2018.8513603.

Abstract

Cerebral malaria (CM) is a life-threatening clinical syndrome associated with 5-10% of malarial infection cases, most prevalent in Africa. About 23% of cerebral malaria cases are misdiagnosed as false positives, leading to inappropriate treatment and loss of lives. Malarial retinopathy (MR) is a retinal manifestation of CM that presents with a highly specific set of lesions. The detection of MR can reduce the false positive diagnosis of CM and alert physicians to investigate for other possible causes of the clinical symptoms and apply a more appropriate clinical intervention of underlying diseases. In order to facilitate easily accessible and affordable means of MR detection, we have developed an automated software system that detects the retinal lesions specific to MR, whitening and hemorrhages, using retinal color fundus images. The individual lesion detection algorithms were combined into an MR detection model using partial least square classifier. The classifier model was trained and tested on retinal image dataset obtained from 64 patients presenting with clinical signs of CM (44 with MR, 20 without MR). The MR detection model yielded specificity of 92% and sensitivity of 68%, with an AUC of 0.82. The proposed MR detection system demonstrates potential for broad screening of MR and can be integrated with a low-cost and portable retinal camera, to provide a bed-side tool for confirming CM diagnosis.

摘要

脑型疟疾(CM)是一种危及生命的临床综合征,与5%-10%的疟疾感染病例相关,在非洲最为常见。约23%的脑型疟疾病例被误诊为假阳性,导致治疗不当和生命损失。疟疾视网膜病变(MR)是CM的一种视网膜表现,具有一组高度特异性的病变。MR的检测可以减少CM的假阳性诊断,并提醒医生调查临床症状的其他可能原因,并对基础疾病进行更适当的临床干预。为了便于获得易于使用且价格合理的MR检测方法,我们开发了一种自动化软件系统,该系统使用视网膜彩色眼底图像检测MR特有的视网膜病变,即白化和出血。使用偏最小二乘分类器将各个病变检测算法组合成一个MR检测模型。该分类器模型在从64例有CM临床体征的患者(44例有MR,20例无MR)获得的视网膜图像数据集上进行训练和测试。MR检测模型的特异性为92%,敏感性为68%,曲线下面积为0.82。所提出的MR检测系统显示出对MR进行广泛筛查的潜力,并且可以与低成本便携式视网膜相机集成,以提供一种用于确认CM诊断的床边工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验