Suppr超能文献

基于鼾声幅度谱趋势特征的呼吸暂停和低通气事件分类

Apnea and Hypopnea Events Classification Using Amplitude Spectrum Trend Feature of Snores.

作者信息

Sun Jingpeng, Hu Xiyuan, Zhao Yingying, Sun Shuchen, Chen Chen, Peng Silong

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6036-6039. doi: 10.1109/EMBC.2018.8513688.

Abstract

Research on snores for Obstructive Sleep Apnea Syndrome (OSAS) diagnosis is a new trend in recent years. In this paper, we proposed a snore-based apnea and hypopnea events classification approach. Firstly, we define the snores after the apnea event and during the hypopnea event as apnea-event-snore (AES) and hypopnea-event-snore (HES), respectively. Then, we design a new feature from the trend of the amplitude spectrum of snores. The newly proposed feature can be viewed as an improvement of the Mel-frequency cepstral coefficient (MFCC) feature, which is well-known for speech recognition. The extracted features were fed to principle component analysis (PCA) for dimension reduction and support vector machine (SVM) for apnea and hypopnea events classification. The experimental results demonstrate the efficiency of the proposed algorithm in using snores to classify apnea and hypopnea events.

摘要

针对阻塞性睡眠呼吸暂停低通气综合征(OSAS)诊断的鼾声研究是近年来的一个新趋势。在本文中,我们提出了一种基于鼾声的呼吸暂停和低通气事件分类方法。首先,我们将呼吸暂停事件之后和低通气事件期间的鼾声分别定义为呼吸暂停事件鼾声(AES)和低通气事件鼾声(HES)。然后,我们从鼾声的幅度谱趋势中设计了一种新特征。新提出的特征可以看作是对梅尔频率倒谱系数(MFCC)特征的改进,MFCC特征在语音识别中广为人知。提取的特征被输入到主成分分析(PCA)进行降维和支持向量机(SVM)进行呼吸暂停和低通气事件分类。实验结果证明了所提算法在利用鼾声对呼吸暂停和低通气事件进行分类方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验