Suppr超能文献

打鼾声音激励位置的自动分类。

Automatic classification of excitation location of snoring sounds.

机构信息

Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.

University of Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

J Clin Sleep Med. 2021 May 1;17(5):1031-1038. doi: 10.5664/jcsm.9094.

Abstract

STUDY OBJECTIVES

For surgical treatment of patients with obstructive sleep apnea-hypopnea syndrome, it is crucial to locate accurately the obstructive sites in the upper airway; however, noninvasive methods for locating the obstructive sites have not been well explored. Snoring, as the cardinal symptom of obstructive sleep apnea-hypopnea syndrome, should contain information that reflects the state of the upper airway. Through the classification of snores produced at four different locations, this study aimed to test the hypothesis that snores generated by various obstructive sites differ.

METHODS

We trained and tested our model on a public data set that comprised 219 participants. For each snore episode, an acoustic and a physiological feature were extracted and concatenated, forming a 59-dimensional fusion feature. A principal component analysis and a support machine vector were used for dimensional reduction and snore classification. The performance of the proposed model was evaluated using several metrics: sensitivity, precision, specificity, area under the receiver operating characteristic curve, and F1 score.

RESULTS

The unweighted average values of sensitivity, precision, specificity, area under the curve, and F1 were 86.36%, 89.09%, 96.4%, 87.9%, and 87.63%, respectively. The model achieved 98.04%, 80.56%, 72.73%, and 94.12% sensitivity for types V (velum), O (oropharyngeal), T (tongue), and E (epiglottis) snores.

CONCLUSIONS

The characteristics of snores are related to the state of the upper airway. The machine-learning-based model can be used to locate the vibration sites in the upper airway.

摘要

研究目的

对于阻塞性睡眠呼吸暂停低通气综合征患者的手术治疗,准确定位上气道的阻塞部位至关重要;然而,尚未充分探索用于定位阻塞部位的非侵入性方法。打鼾是阻塞性睡眠呼吸暂停低通气综合征的主要症状,应该包含反映上气道状态的信息。通过对四个不同部位产生的鼾声进行分类,本研究旨在检验以下假设,即来自不同阻塞部位的鼾声存在差异。

方法

我们在一个包含 219 名参与者的公共数据集上对模型进行了训练和测试。对于每个鼾声事件,提取了声学和生理特征,并将它们串联起来,形成一个 59 维融合特征。使用主成分分析和支持向量机进行降维和鼾声分类。使用灵敏度、精确度、特异性、受试者工作特征曲线下面积和 F1 分数等多个指标来评估所提出模型的性能。

结果

未加权平均灵敏度、精确度、特异性、曲线下面积和 F1 分别为 86.36%、89.09%、96.4%、87.9%和 87.63%。对于 V(软腭)、O(口咽)、T(舌)和 E(会厌)型鼾声,该模型的灵敏度分别为 98.04%、80.56%、72.73%和 94.12%。

结论

鼾声的特征与上气道的状态有关。基于机器学习的模型可用于定位上气道的振动部位。

相似文献

10
SnoreNet: Detecting Snore Events from Raw Sound Recordings.SnoreNet:从原始声音记录中检测打鼾事件。
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4977-4981. doi: 10.1109/EMBC.2019.8857884.

本文引用的文献

4
Speech synthesis from neural decoding of spoken sentences.基于语音解码的语音合成
Nature. 2019 Apr;568(7753):493-498. doi: 10.1038/s41586-019-1119-1. Epub 2019 Apr 24.
6
Snoring classified: The Munich-Passau Snore Sound Corpus.打鼾分类:慕尼黑-帕绍打鼾声音语料库。
Comput Biol Med. 2018 Mar 1;94:106-118. doi: 10.1016/j.compbiomed.2018.01.007. Epub 2018 Jan 31.
8
Deep Canonical Time Warping for Simultaneous Alignment and Representation Learning of Sequences.深度正则时间 warp 用于序列的同时对齐和表示学习。
IEEE Trans Pattern Anal Mach Intell. 2018 May;40(5):1128-1138. doi: 10.1109/TPAMI.2017.2710047. Epub 2017 Jun 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验