Zhou Zhanhong, Zhai Xiaolong, Tin Chung
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6121-6124. doi: 10.1109/EMBC.2018.8513671.
Cerebellum possesses very rich motor control and learning capability which is critical for animals. In this study, we proposed a spiking neural network model of cerebellum for gain and phase adaptation in vestibulo-ocular reflex (VOR). VOR is a critical adaptive reflexive eye movement for maintaining a stable visual field. In this model (with neuron number at the order of 104), synaptic plasticity at parallel fiber-Purkinje cell synapses was considered. In particular, we have shown that the inhibitory inputs from molecular layer interneurons on Purkinje cells play a critical role in phase adaptation of VOR. The inhibitory input from interneurons indirectly affects the strength of long-term potentiation (LTP) and long-term depression (LTD), resulting in more drastic phase shift upon learning and hence allowing phase reversal of VOR. The strength of inhibitory input also affects the maximum phase shift that can be achieved. Our result is consistent with experiments in mutant mice with blocked inhibitory inputs.
小脑拥有非常丰富的运动控制和学习能力,这对动物至关重要。在本研究中,我们提出了一种用于前庭眼反射(VOR)增益和相位适应的小脑脉冲神经网络模型。VOR是一种维持稳定视野的关键适应性反射性眼球运动。在该模型(神经元数量约为104)中,考虑了平行纤维 - 浦肯野细胞突触的突触可塑性。特别地,我们已经表明,分子层中间神经元对浦肯野细胞的抑制性输入在前庭眼反射的相位适应中起关键作用。中间神经元的抑制性输入间接影响长时程增强(LTP)和长时程抑制(LTD)的强度,导致学习时相位变化更剧烈,从而允许前庭眼反射的相位反转。抑制性输入的强度也影响可实现的最大相位变化。我们的结果与抑制性输入受阻的突变小鼠实验一致。