Suppr超能文献

运动感知相关滤波器的在线视觉跟踪。

Motion-Aware Correlation Filters for Online Visual Tracking.

机构信息

College of Information Science and Technology, Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, DongHua University, Shanghai 201620, China.

出版信息

Sensors (Basel). 2018 Nov 14;18(11):3937. doi: 10.3390/s18113937.

Abstract

The discriminative correlation filters-based methods struggle deal with the problem of fast motion and heavy occlusion, the problem can severely degrade the performance of trackers, ultimately leading to tracking failures. In this paper, a novel Motion-Aware Correlation Filters (MACF) framework is proposed for online visual object tracking, where a motion-aware strategy based on joint instantaneous motion estimation Kalman filters is integrated into the Discriminative Correlation Filters (DCFs). The proposed motion-aware strategy is used to predict the possible region and scale of the target in the current frame by utilizing the previous estimated 3D motion information. Obviously, this strategy can prevent model drift caused by fast motion. On the base of the predicted region and scale, the MACF detects the position and scale of the target by using the DCFs-based method in the current frame. Furthermore, an adaptive model updating strategy is proposed to address the problem of corrupted models caused by occlusions, where the learning rate is determined by the confidence of the response map. The extensive experiments on popular Object Tracking Benchmark OTB-100, OTB-50 and unmanned aerial vehicles (UAV) video have demonstrated that the proposed MACF tracker performs better than most of the state-of-the-art trackers and achieves a high real-time performance. In addition, the proposed approach can be integrated easily and flexibly into other visual tracking algorithms.

摘要

基于判别相关滤波器的方法在处理快速运动和严重遮挡问题时存在困难,该问题会严重降低跟踪器的性能,最终导致跟踪失败。本文提出了一种新颖的运动感知相关滤波器(MACF)框架,用于在线视觉目标跟踪,其中基于联合瞬时运动估计卡尔曼滤波器的运动感知策略被集成到判别相关滤波器(DCFs)中。所提出的运动感知策略用于通过利用先前估计的 3D 运动信息来预测当前帧中目标的可能区域和尺度。显然,该策略可以防止由于快速运动导致的模型漂移。基于预测的区域和尺度,MACF 使用基于 DCFs 的方法在当前帧中检测目标的位置和尺度。此外,还提出了一种自适应模型更新策略来解决遮挡导致的模型损坏问题,其中学习率由响应图的置信度确定。在流行的目标跟踪基准 OTB-100、OTB-50 和无人机(UAV)视频上的广泛实验表明,所提出的 MACF 跟踪器的性能优于大多数最先进的跟踪器,并实现了高实时性能。此外,所提出的方法可以轻松灵活地集成到其他视觉跟踪算法中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d64/6263798/10b5ec11583a/sensors-18-03937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验