Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Acta Pharmacol Sin. 2019 Jan;40(1):133-142. doi: 10.1038/s41401-018-0183-7. Epub 2018 Nov 15.
Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.
小檗碱、小檗红碱、唐松草碱、去亚甲基小檗碱、黄连碱和苦参碱是六种天然原小檗碱类生物碱 (PA) 化合物,具有广泛的药理活性,并且具有相同的原小檗碱分子骨架,只有细微的取代差异。大多数 PA 的口服给药受到其生物利用度差的阻碍,这主要是由 P 糖蛋白 (P-gp) 介导的药物外排引起的。同时,P-gp 在转运底物时会经历大规模构象变化(从内向到外向状态),这些变化可能会强烈影响 P-gp 的结合特异性。为了确认这六种化合物是否是 P-gp 的底物,研究它们微小结构差异引起的外排能力差异,并揭示提高它们与 P-gp 结合亲和力的关键,我们进行了一系列体内、体外和计算研究。在这里,我们首先通过比较体内野生型和 P-gp 敲除小鼠的药物浓度来确认这六种化合物都是 P-gp 的底物。根据 Caco-2 单层中的体外转运研究,外排能力(净外排)的顺序为小檗红碱 > 小檗碱 > 苦参碱~黄连碱 > 唐松草碱 > 去亚甲基小檗碱。通过分子动力学模拟和分子对接技术,我们确定了这六种化合物的转运途径及其与 P-gp 的结合亲和力。结果表明,在早期结合阶段,不同的疏水性和静电相互作用共同区分了化合物与 P-gp 的结合亲和力,而静电相互作用是后期释放阶段的主要决定因素。除了疏水性相互作用外,氢键在区分结合亲和力方面也起着重要作用。