文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高密度养殖会延迟大西洋鲑(Salmo salar)的伤口愈合。

High fish density delays wound healing in Atlantic salmon (Salmo salar).

机构信息

University of Bergen, Postboks 7800, 5020, Bergen, Norway.

Nofima, Osloveien 1, 1430, Ås, Norway.

出版信息

Sci Rep. 2018 Nov 15;8(1):16907. doi: 10.1038/s41598-018-35002-5.


DOI:10.1038/s41598-018-35002-5
PMID:30443022
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6237775/
Abstract

In this study, we look closer at how high fish densities influence wound repair mechanisms in post-smolt Atlantic salmon. The fish were wounded with a 5 mm skin punch biopsy needle and stocked at two different densities, a high fish density (100 kg/m) treatment and a low fish density treatment (20 kg/m) serving as the control. The healing wounds were followed for 57 days with samples taken 1, 3, 7, 14, 36, 43 and 57 days post wounding. The transcriptomic analysis suggests that high fish density enhance inflammation and represses cell proliferation, tissue secretion and collagen synthesis in the healing wounds. The histological analysis further showed delayed epidermal and dermal repair in the high fish density treatment compared to control. The overall wound contraction was also altered by the treatment. In conclusion, high fish density enhances immune responses and delay tissue repair, which ultimately results in delayed wound healing.

摘要

在这项研究中,我们更深入地研究了高密度鱼类如何影响大西洋鲑鱼亚成鱼的伤口修复机制。研究中使用 5mm 皮肤打孔活检针对鱼进行了创伤处理,并将鱼分为两个不同的密度组进行养殖,高密度组(100kg/m)和低密度组(20kg/m),后者作为对照组。对愈合伤口进行了 57 天的跟踪观察,在受伤后第 1、3、7、14、36、43 和 57 天取样。转录组分析表明,高密度鱼类会增强炎症反应,并抑制愈合伤口中的细胞增殖、组织分泌和胶原合成。组织学分析还进一步表明,与对照组相比,高密度组的表皮和真皮修复延迟。治疗还改变了整体伤口收缩。总之,高密度鱼类会增强免疫反应并延迟组织修复,最终导致伤口愈合延迟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/1e0f66d84972/41598_2018_35002_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/b7d014056617/41598_2018_35002_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/06a24033ab66/41598_2018_35002_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/ee6a7d6663c6/41598_2018_35002_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/dab666386a61/41598_2018_35002_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/23a42b95ad2c/41598_2018_35002_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/57f2de0f6013/41598_2018_35002_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/8e51a38b1ed3/41598_2018_35002_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/83b0e7017302/41598_2018_35002_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/ce905952c8cf/41598_2018_35002_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/b9e8bd21bf72/41598_2018_35002_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/1e0f66d84972/41598_2018_35002_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/b7d014056617/41598_2018_35002_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/06a24033ab66/41598_2018_35002_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/ee6a7d6663c6/41598_2018_35002_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/dab666386a61/41598_2018_35002_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/23a42b95ad2c/41598_2018_35002_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/57f2de0f6013/41598_2018_35002_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/8e51a38b1ed3/41598_2018_35002_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/83b0e7017302/41598_2018_35002_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/ce905952c8cf/41598_2018_35002_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/b9e8bd21bf72/41598_2018_35002_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5765/6237775/1e0f66d84972/41598_2018_35002_Fig11_HTML.jpg

相似文献

[1]
High fish density delays wound healing in Atlantic salmon (Salmo salar).

Sci Rep. 2018-11-15

[2]
Wound healing in post-smolt Atlantic salmon (Salmo salar L.).

Sci Rep. 2019-3-5

[3]
Effect of temperature and diet on wound healing in Atlantic salmon (Salmo salar L.).

Fish Physiol Biochem. 2015-12

[4]
Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation.

Dev Comp Immunol. 2018-10

[5]
Stress Impairs Skin Barrier Function and Induces α2-3 Linked -Acetylneuraminic Acid and Core 1 -Glycans on Skin Mucins in Atlantic Salmon, .

Int J Mol Sci. 2021-2-2

[6]
Accelerated recovery of Atlantic salmon (Salmo salar) from effects of crowding by swimming.

Comp Biochem Physiol B Biochem Mol Biol. 2006-7

[7]
Rapid temperature-dependent wound closure following adipose fin clipping of Atlantic salmon Salmo salar L.

J Fish Dis. 2015-6

[8]
Exploring the transcriptome of Atlantic salmon (Salmo salar) skin, a major defense organ.

Mar Biotechnol (NY). 2012-4-19

[9]
Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness.

BMC Genomics. 2017-1-30

[10]
Demographic and genetic description of Greenland's only indigenous Atlantic salmon Salmo salar population.

J Fish Biol. 2019-1

引用本文的文献

[1]
Seasonal Temperature Differentially Modulates the Immunotranscriptomic Performance in Atlantic Salmon Skin in Response to Natural Infestation in Open-Ocean Cages.

Animals (Basel). 2025-8-12

[2]
Local inflammation at the salmon louse (Lepeophtheirus salmonis) attachment site contributes to copepodid rejection in coho salmon (Oncorhynchus kisutch).

Cell Tissue Res. 2025-6-4

[3]
Contact Cooling-Induced ELOVL4 Enhances Skin Wound Healing by Promoting the Inflammation-to-Proliferation Phase Transition.

Int J Biol Sci. 2025-2-18

[4]
Histological and ultrastructural characterization of the dorso-ventral skin of the juvenile and the adult starry puffer fish (Arothron stellatus, Anonymous 1798).

BMC Vet Res. 2023-10-24

[5]
Understanding how high stocking densities and concurrent limited oxygen availability drive social cohesion and adaptive features in regulatory growth, antioxidant defense and lipid metabolism in farmed gilthead sea bream ().

Front Physiol. 2023-10-4

[6]
Transcriptomic landscape of Atlantic salmon (Salmo salar L.) skin.

G3 (Bethesda). 2023-11-1

[7]
Microbial biogeochemical cycling reveals the sustainability of the rice-crayfish co-culture model.

iScience. 2023-4-26

[8]
Chronic stress negatively impacts wound healing, welfare, and stress regulation in internally tagged Atlantic salmon ().

Front Physiol. 2023-4-3

[9]
The skin mucosal barrier of lumpfish (Cyclopterus lumpus L.) is weakened by exposure to potential aquaculture production-related stressors.

J Fish Biol. 2025-1

[10]
Expression Analysis of -Challenged Atlantic Salmon Identifies Disease-Responding Genes, MicroRNAs and Their Predicted Target Genes and Pathways.

Int J Mol Sci. 2022-9-23

本文引用的文献

[1]
Genome-wide analysis of Atlantic salmon (Salmo salar) mucin genes and their role as biomarkers.

PLoS One. 2017-12-13

[2]
Effect of asiaticoside on the healing of skin wounds in the carp Cirrhinus mrigala: An immunohistochemical investigation.

Tissue Cell. 2017-12

[3]
The biology of mucus: Composition, synthesis and organization.

Adv Drug Deliv Rev. 2017-9-29

[4]
Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

Fish Shellfish Immunol. 2017-9

[5]
Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

Fish Shellfish Immunol. 2016-1

[6]
The bioenergetic costs of a gene.

Proc Natl Acad Sci U S A. 2015-12-22

[7]
Effect of temperature and diet on wound healing in Atlantic salmon (Salmo salar L.).

Fish Physiol Biochem. 2015-12

[8]
Matrix metalloproteinase 9 modulates collagen matrices and wound repair.

Development. 2015-6-15

[9]
Metalloproteinases and Wound Healing.

Adv Wound Care (New Rochelle). 2015-4-1

[10]
Matrix remodeling by MMPs during wound repair.

Matrix Biol. 2015-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索