Suppr超能文献

由运输所需的脂化内体分选复合物-III嵌合体进行的膜重塑

Membrane remodelling by a lipidated endosomal sorting complex required for transport-III chimera, .

作者信息

Marklew C J, Booth A, Beales P A, Ciani B

机构信息

Department of Chemistry and Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield, UK.

School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.

出版信息

Interface Focus. 2018 Oct 6;8(5):20180035. doi: 10.1098/rsfs.2018.0035. Epub 2018 Aug 17.

Abstract

The complexity of eukaryotic cells is underscored by the compartmentalization of chemical signals by phospholipid membranes. A grand challenge of synthetic biology is building life from the 'bottom-up', for the purpose of generating systems simple enough to precisely interrogate biological pathways or for adapting biology to perform entirely novel functions. Achieving compartmentalization of chemistries in an addressable manner is a task exquisitely refined by nature and embodied in a unique membrane remodelling machinery that pushes membranes away from the cytosol, the ESCRT-III (endosomal sorting complex required for transport-III) complex. Here, we show efforts to engineer a single ESCRT-III protein merging functional features from its different components. The activity of such a designed ESCRT-III is shown by its ability to drive the formation of compartments encapsulating fluorescent cargo. It appears that the modular nature of ESCRT-III allows its functional repurposing into a minimal machinery that performs sophisticated membrane remodelling, therefore enabling its use to create eukaryotic-like multi-compartment architectures.

摘要

磷脂膜对化学信号的区室化突出了真核细胞的复杂性。合成生物学的一个重大挑战是“自下而上”构建生命,目的是生成足够简单的系统以精确探究生物途径,或使生物学适应执行全新的功能。以可寻址的方式实现化学物质的区室化是一项大自然精心完善的任务,并体现在一种独特的膜重塑机制中,该机制将膜从细胞质中推开,即运输所需内体分选复合物III(ESCRT-III)复合物。在这里,我们展示了改造单一ESCRT-III蛋白以融合其不同组件功能特征的努力。这种设计的ESCRT-III的活性通过其驱动包裹荧光货物的区室形成的能力得以体现。ESCRT-III的模块化性质似乎使其能够功能重新利用,成为执行复杂膜重塑的最小机制,因此能够用于创建类似真核细胞的多区室结构。

相似文献

1
Membrane remodelling by a lipidated endosomal sorting complex required for transport-III chimera, .
Interface Focus. 2018 Oct 6;8(5):20180035. doi: 10.1098/rsfs.2018.0035. Epub 2018 Aug 17.
2
In Vitro Membrane Remodeling by ESCRT is Regulated by Negative Feedback from Membrane Tension.
iScience. 2019 May 31;15:173-184. doi: 10.1016/j.isci.2019.04.021. Epub 2019 Apr 20.
3
Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico.
BMC Biol. 2019 Oct 22;17(1):82. doi: 10.1186/s12915-019-0700-2.
4
Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins.
iScience. 2022 Dec 8;26(1):105765. doi: 10.1016/j.isci.2022.105765. eCollection 2023 Jan 20.
6
Cargo-dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting.
Traffic. 2011 Sep;12(9):1211-26. doi: 10.1111/j.1600-0854.2011.01220.x. Epub 2011 Jun 13.
8
Evidence for a Nonendosomal Function of the Saccharomyces cerevisiae ESCRT-III-Like Protein Chm7.
Genetics. 2015 Dec;201(4):1439-52. doi: 10.1534/genetics.115.178939. Epub 2015 Oct 28.

引用本文的文献

2
Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins.
iScience. 2022 Dec 8;26(1):105765. doi: 10.1016/j.isci.2022.105765. eCollection 2023 Jan 20.
3
Spatiotemporal Dynamic Assembly/Disassembly of Organelle-Mimics Based on Intrinsically Disordered Protein-Polymer Conjugates.
Adv Sci (Weinh). 2021 Dec;8(24):e2102508. doi: 10.1002/advs.202102508. Epub 2021 Nov 1.
4
Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model.
Chem Sci. 2020 Aug 12;11(35):9434-9442. doi: 10.1039/d0sc02768e.
5
The ESCRTs - converging on mechanism.
J Cell Sci. 2020 Sep 16;133(18):jcs240333. doi: 10.1242/jcs.240333.
6
In Vitro Membrane Remodeling by ESCRT is Regulated by Negative Feedback from Membrane Tension.
iScience. 2019 May 31;15:173-184. doi: 10.1016/j.isci.2019.04.021. Epub 2019 Apr 20.
7
Topography design in model membranes: Where biology meets physics.
Exp Biol Med (Maywood). 2019 Mar;244(4):294-303. doi: 10.1177/1535370218809369. Epub 2018 Oct 31.

本文引用的文献

1
Synthetic Cells Synthesize Therapeutic Proteins inside Tumors.
Adv Healthc Mater. 2018 May;7(9):e1701163. doi: 10.1002/adhm.201701163. Epub 2017 Dec 28.
3
Artificial cell mimics as simplified models for the study of cell biology.
Exp Biol Med (Maywood). 2017 Jul;242(13):1309-1317. doi: 10.1177/1535370217711441. Epub 2017 Jun 4.
4
Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity.
Acc Chem Res. 2017 Apr 18;50(4):769-777. doi: 10.1021/acs.accounts.6b00512. Epub 2017 Jan 17.
5
Designed proteins induce the formation of nanocage-containing extracellular vesicles.
Nature. 2016 Dec 8;540(7632):292-295. doi: 10.1038/nature20607. Epub 2016 Nov 30.
6
Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation.
Cell. 2015 Nov 5;163(4):866-79. doi: 10.1016/j.cell.2015.10.017. Epub 2015 Oct 29.
7
Stimuli-Triggered Activity of Nanoreactors by Biomimetic Engineering Polymer Membranes.
Nano Lett. 2015 Nov 11;15(11):7596-603. doi: 10.1021/acs.nanolett.5b03386. Epub 2015 Oct 26.
8
APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex.
Cell Mol Life Sci. 2016 Jan;73(2):393-408. doi: 10.1007/s00018-015-1993-0. Epub 2015 Jul 28.
9
Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments.
Phys Chem Chem Phys. 2015 Jun 28;17(24):15489-507. doi: 10.1039/c5cp00480b. Epub 2015 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验