Suppr超能文献

通过熵效应,将两条聚乙二醇化侧链钉合增加了 WW 结构域的构象稳定性。

Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect.

机构信息

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.

出版信息

Org Biomol Chem. 2018 Nov 28;16(46):8933-8939. doi: 10.1039/c8ob02535e.

Abstract

Hydrocarbon stapling and PEGylation are distinct strategies for enhancing the conformational stability and/or pharmacokinetic properties of peptide and protein drugs. Here we combine these approaches by incorporating asparagine-linked O-allyl PEG oligomers at two positions within the β-sheet protein WW, followed by stapling of the PEGs via olefin metathesis. The impact of stapling two sites that are close in primary sequence is small relative to the impact of PEGylation alone and depends strongly on PEG length. In contrast, stapling of two PEGs that are far apart in primary sequence but close in tertiary structure provides substantially more stabilization, derived mostly from an entropic effect. Comparison of PEGylation + stapling vs. alkylation + stapling at the same positions in WW reveals that both approaches provide similar overall levels of conformational stability.

摘要

烃 stapling 和 PEGylation 是增强肽和蛋白质药物构象稳定性和/或药代动力学特性的两种截然不同的策略。在这里,我们通过在 β-折叠蛋白 WW 的两个位置结合连接有烯丙基的 O-聚乙二醇寡聚物,将这两种方法结合起来,然后通过烯烃复分解使 PEG 键合。与单独 PEGylation 相比,在一级序列上靠近的两个位置 stapling 的影响相对较小,并且强烈依赖于 PEG 长度。相比之下,在三级结构上接近但在一级序列上相距较远的两个 PEG 的 stapling 提供了更多的稳定性,主要源于熵效应。在 WW 的相同位置比较 PEGylation + stapling 与 alkylation + stapling 表明,这两种方法提供了相似的构象稳定性。

相似文献

2
Long-range PEG Stapling: Macrocyclization for Increased Protein Conformational Stability and Resistance to Proteolysis.
RSC Chem Biol. 2020 Oct 1;1(4):273-280. doi: 10.1039/d0cb00075b. Epub 2020 Aug 13.
3
Criteria for selecting PEGylation sites on proteins for higher thermodynamic and proteolytic stability.
J Am Chem Soc. 2014 Dec 17;136(50):17547-60. doi: 10.1021/ja5095183. Epub 2014 Dec 4.
4
Polyethylene Glycol Based Changes to β-Sheet Protein Conformational and Proteolytic Stability Depend on Conjugation Strategy and Location.
Bioconjug Chem. 2017 Oct 18;28(10):2507-2513. doi: 10.1021/acs.bioconjchem.7b00281. Epub 2017 Oct 9.
6
Two structural scenarios for protein stabilization by PEG.
J Phys Chem B. 2014 Jul 17;118(28):8388-95. doi: 10.1021/jp502234s. Epub 2014 Jun 2.
7
Conjugation Strategy Strongly Impacts the Conformational Stability of a PEG-Protein Conjugate.
ACS Chem Biol. 2016 Jul 15;11(7):1805-9. doi: 10.1021/acschembio.6b00349. Epub 2016 May 20.
8
PEGylation near a Patch of Nonpolar Surface Residues Increases the Conformational Stability of the WW Domain.
J Org Chem. 2020 Feb 7;85(3):1725-1730. doi: 10.1021/acs.joc.9b02615. Epub 2019 Dec 9.
9
Influence of PEGylation on the Strength of Protein Surface Salt Bridges.
ACS Chem Biol. 2019 Jul 19;14(7):1652-1659. doi: 10.1021/acschembio.9b00432. Epub 2019 Jun 24.
10
The impact of PEGylation on biological therapies.
BioDrugs. 2008;22(5):315-29. doi: 10.2165/00063030-200822050-00004.

引用本文的文献

1
Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics.
Chem Rev. 2024 Nov 27;124(22):13020-13093. doi: 10.1021/acs.chemrev.4c00423. Epub 2024 Nov 14.
2
The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion.
Curr Drug Deliv. 2024;21(7):978-992. doi: 10.2174/1567201820666230621124953.
3
Structural guidelines for stabilization of α-helical coiled coils PEG stapling.
RSC Chem Biol. 2022 Jul 26;3(9):1096-1104. doi: 10.1039/d1cb00237f. eCollection 2022 Aug 31.
4
Long-range PEG Stapling: Macrocyclization for Increased Protein Conformational Stability and Resistance to Proteolysis.
RSC Chem Biol. 2020 Oct 1;1(4):273-280. doi: 10.1039/d0cb00075b. Epub 2020 Aug 13.
5
Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns.
Nat Chem. 2020 Apr;12(4):331-337. doi: 10.1038/s41557-020-0420-9. Epub 2020 Feb 6.

本文引用的文献

1
Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis.
Angew Chem Int Ed Engl. 1998 Dec 17;37(23):3281-3284. doi: 10.1002/(SICI)1521-3773(19981217)37:23<3281::AID-ANIE3281>3.0.CO;2-V.
2
Chemically Diverse Helix-Constrained Peptides Using Selenocysteine Crosslinking.
Org Lett. 2018 Mar 2;20(5):1453-1456. doi: 10.1021/acs.orglett.8b00233. Epub 2018 Feb 20.
3
Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.
Chem Sci. 2017 Jun 1;8(6):4257-4263. doi: 10.1039/c6sc05454d. Epub 2017 Mar 24.
4
Residue-Specific Peptide Modification: A Chemist's Guide.
Biochemistry. 2017 Aug 1;56(30):3863-3873. doi: 10.1021/acs.biochem.7b00536. Epub 2017 Jul 17.
6
Stapled Peptides by Late-Stage C(sp )-H Activation.
Angew Chem Int Ed Engl. 2017 Jan 2;56(1):314-318. doi: 10.1002/anie.201608648. Epub 2016 Nov 30.
7
Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.
Methods Enzymol. 2016;580:303-32. doi: 10.1016/bs.mie.2016.05.035. Epub 2016 Jun 24.
8
Thermodynamic origin of α-helix stabilization by side-chain cross-links in a small protein.
Org Biomol Chem. 2016 Jun 15;14(24):5768-73. doi: 10.1039/c6ob00475j.
10
A two-component 'double-click' approach to peptide stapling.
Nat Protoc. 2015 Apr;10(4):585-94. doi: 10.1038/nprot.2015.033. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验