Rajeshkhanna Gaddam, Kandula Syam, Shrestha Khem Raj, Kim Nam Hoon, Lee Joong Hee
Advanced Materials Institute for BIN Convergence Technology (BK21 plus Global Program), Department of BIN Convergence Technology, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
Carbon Composite Research Centre, Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
Small. 2018 Dec;14(51):e1803638. doi: 10.1002/smll.201803638. Epub 2018 Nov 16.
The scalable and cost-effective H fuel production via electrolysis demands an efficient earth-abundant oxygen and hydrogen evolution reaction (OER, and HER, respectively) catalysts. In this work, for the first time, the synthesis of a sheet-like Zn Fe -oxyselenide and Zn Fe -LDH on Ni-foam is reported. The hydrothermally synthesized Zn Fe -LDH/Ni-foam is successfully converted into Zn Fe -oxyselenide/Ni-foam through an ethylene glycol-assisted solvothermal method. The anionic regulation of electrocatalysts modulates the electronic properties, and thereby augments the electrocatalytic activities. The as-prepared Zn Fe -LDH/Ni-foam shows very low OER and HER overpotentials of 263 mV at a current density of 20 mA cm and 221 mV at 10 mA cm , respectively. Interestingly, this OER overpotential is decreased to 256 mV after selenization and the HER overpotential of Zn Fe -oxyselenide/Ni-foam is decreased from 238 to 202 mV at 10 mA cm after a stability test. Thus, the Zn Fe -oxyselenide/Ni-foam shows superior bifunctional catalytic activities and excellent durability at a very high current density of 50 mA cm . More importantly, when the Zn Fe -oxyselenide/Ni-foam is used as the anode and cathode in an electrolyzer for overall water splitting, Zn Fe -oxyselenide/Ni-foam(+)ǁZn Fe -oxyselenide/Ni-foam(-) shows an appealing potential of 1.62 V at 10 mA cm . The anionic doping/substitution methodology is new and serves as an effective strategy to develop highly efficient bifunctional electrocatalysts.
通过电解实现可扩展且具有成本效益的H燃料生产需要高效的、地球上储量丰富的析氧反应(OER)和析氢反应(HER)催化剂。在这项工作中,首次报道了在泡沫镍上合成片状的锌铁氧硒化物和锌铁层状双氢氧化物(LDH)。通过水热法合成的锌铁-LDH/泡沫镍通过乙二醇辅助溶剂热法成功转化为锌铁氧硒化物/泡沫镍。电催化剂的阴离子调控调节了电子性质,从而增强了电催化活性。制备的锌铁-LDH/泡沫镍在电流密度为20 mA cm时显示出非常低的OER过电位263 mV,在10 mA cm时显示出221 mV的HER过电位。有趣的是,硒化后该OER过电位降至256 mV,稳定性测试后,锌铁氧硒化物/泡沫镍在10 mA cm时的HER过电位从238 mV降至202 mV。因此,锌铁氧硒化物/泡沫镍在50 mA cm的非常高电流密度下显示出优异的双功能催化活性和出色的耐久性。更重要的是,当锌铁氧硒化物/泡沫镍用作电解槽中全水解的阳极和阴极时,锌铁氧硒化物/泡沫镍(+)ǁ锌铁氧硒化物/泡沫镍(-)在10 mA cm时显示出1.62 V的诱人电位。阴离子掺杂/取代方法是一种新的方法,是开发高效双功能电催化剂的有效策略。