Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , P. R. China.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26283-26292. doi: 10.1021/acsami.8b07835. Epub 2018 Jul 25.
Constructing catalysts with new and optimizational chemical components and structures, which can operate well for both the anodic oxygen evolution reaction (OER) and the cathodic hydrogen evolution reaction (HER) at large current densities, is of primary importance in practical water splitting technology. Herein, the NiFeO nanoparticles/NiFe layered double hydroxide (LDH) nanosheet heterostructure array on Ni foam was prepared via a simple one-step solvothermal approach. The as-prepared heterostructure array displays high catalytic activity toward the OER with a small overpotential of 213 mV at 100 mA cm and can afford a current density of 500 mA cm at an overpotential of 242 mV and 1000 mA cm at 265 mV. Moreover, it also presents outstanding HER activity, only needing a small overpotential of 101 mV at 10 mA cm, and can drive large current densities of 500 and 750 mA cm at individual overpotentials of 297 and 314 mV. A two-electrode electrolyzer using NiFeO nanoparticles/NiFe LDH nanosheets as both the anode and the cathode implements active overall water splitting, demanding a low voltage of 1.535 V to drive 10 mA cm, and can deliver 500 mA cm at 1.932 V. The NiFeO nanoparticles/NiFe LDH nanosheet array electrodes also show excellent stability against OER, HER, and overall water splitting at large current densities. Significantly, the overall water splitting with NiFeO nanoparticles/NiFe LDH nanosheets as both the anode and the cathode can be continuously driven by a battery of only 1.5 V. The intrinsic advantages and strong coupling effects of NiFeO nanoparticles and NiFe LDH nanosheets make NiFeO nanoparticles/NiFe LDH nanosheet heterostructure array abundant catalytically active sites, high electronic conductivity, and high catalytic reactivity, which remarkably contributed to the catalytic activities for OER, HER, and overall water splitting. Our work can inspire the optimal design of the NiFe bimetallic heterostructure electrocatalyst for application in practical water electrolysis.
构建具有新的和优化的化学组成和结构的催化剂,使其在大电流密度下能够很好地同时进行阳极析氧反应(OER)和阴极析氢反应(HER),这在实际的水分解技术中至关重要。在此,通过简单的一步溶剂热法制备了 NiFeO 纳米颗粒/NiFe 层状双氢氧化物(LDH)纳米片异质结构阵列在 Ni 泡沫上。所制备的异质结构阵列对 OER 表现出高催化活性,在 100 mA cm 时过电势仅为 213 mV,在 242 mV 和 265 mV 时过电势为 500 mA cm 和 1000 mA cm 时可提供电流密度 500 mA cm。此外,它还表现出优异的 HER 活性,在 10 mA cm 时仅需要很小的过电势 101 mV,并且可以在单独的过电势 297 和 314 mV 下驱动 500 和 750 mA cm 的大电流密度。使用 NiFeO 纳米颗粒/NiFe LDH 纳米片作为阳极和阴极的两电极电解槽实现了活性全水分解,要求低电压 1.535 V 驱动 10 mA cm,并可以在 1.932 V 时提供 500 mA cm。NiFeO 纳米颗粒/NiFe LDH 纳米片阵列电极在大电流密度下对 OER、HER 和全水分解也表现出优异的稳定性。重要的是,使用 NiFeO 纳米颗粒/NiFe LDH 纳米片作为阳极和阴极的全水分解可以通过仅 1.5 V 的电池连续驱动。NiFeO 纳米颗粒和 NiFe LDH 纳米片的固有优势和强耦合效应使 NiFeO 纳米颗粒/NiFe LDH 纳米片异质结构阵列具有丰富的催化活性位点、高导电性和高催化活性,这对 OER、HER 和全水分解的催化活性有显著贡献。我们的工作可以为应用于实际水电解的 NiFe 双金属异质结构电催化剂的优化设计提供启示。