Planques Anabelle, Malem Julien, Parapar Julio, Vervoort Michel, Gazave Eve
Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
Departamento de Bioloxía, Universidade da Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain.
Dev Biol. 2019 Jan 15;445(2):189-210. doi: 10.1016/j.ydbio.2018.11.004. Epub 2018 Nov 13.
Regeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2'-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species.
再生,即受伤或截肢后恢复身体部位的能力,是动物界普遍存在但高度可变且复杂的现象。尽管几个世纪以来一直吸引着科学家,但关于动物再生的细胞基础及其进化历史的基本问题在很大程度上仍未得到解答。在此,我们展示了一项关于海洋环节动物杜氏阔沙蚕再生的研究,杜氏阔沙蚕是一种新兴的比较发育生物学模型,与许多其他环节动物一样,具有重要的再生能力。当杜氏阔沙蚕被截肢时,它们能够再生身体最末端的分化部分以及一个富含干细胞的生长区,该生长区能够产生新的体节以替代被截肢的体节。我们表明,后部再生是一个快速的过程,遵循可重复的路径和时间线,经历我们详细定义的特定阶段。截肢一天后伤口愈合,一天后形成再生芽基。此时,一些组织特化已经发生,并且早在截肢三天后就重新建立了功能性的后部生长区。再生时间仅受到蠕虫大小的轻微影响。在沿着蠕虫前后轴的不同位置进行截肢时,发现了类似的再生能力,除非截肢平面非常靠近咽部。在重复截肢后,再生能力仍然存在,且过程没有重要改变。我们还表明,再生过程中会发生强烈的细胞增殖,并且细胞分裂是再生正常进行所必需的。最后,5-乙炔基-2'-脱氧尿苷(EdU)脉冲追踪实验表明,芽基细胞大多来源于紧邻截肢平面的体节。本文中对杜氏阔沙蚕后部身体再生的详细表征为该物种未来的再生机制和比较研究奠定了基础。