Suppr超能文献

利用增强子活性作为因果锚点进行因果转录调控网络推断。

Causal Transcription Regulatory Network Inference Using Enhancer Activity as a Causal Anchor.

机构信息

Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.

Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.

出版信息

Int J Mol Sci. 2018 Nov 15;19(11):3609. doi: 10.3390/ijms19113609.

Abstract

Transcription control plays a crucial role in establishing a unique gene expression signature for each of the hundreds of mammalian cell types. Though gene expression data have been widely used to infer cellular regulatory networks, existing methods mainly infer correlations rather than causality. We developed statistical models and likelihood-ratio tests to infer causal gene regulatory networks using enhancer RNA (eRNA) expression information as a causal anchor and applied the framework to eRNA and transcript expression data from the FANTOM Consortium. Predicted causal targets of transcription factors (TFs) in mouse embryonic stem cells, macrophages and erythroblastic leukaemia overlapped significantly with experimentally-validated targets from ChIP-seq and perturbation data. We further improved the model by taking into account that some TFs might act in a quantitative, dosage-dependent manner, whereas others might act predominantly in a binary on/off fashion. We predicted TF targets from concerted variation of eRNA and TF and target promoter expression levels within a single cell type, as well as across multiple cell types. Importantly, TFs with high-confidence predictions were largely different between these two analyses, demonstrating that variability within a cell type is highly relevant for target prediction of cell type-specific factors. Finally, we generated a compendium of high-confidence TF targets across diverse human cell and tissue types.

摘要

转录调控在为数百种哺乳动物细胞类型中的每一种建立独特的基因表达特征方面发挥着关键作用。尽管基因表达数据已被广泛用于推断细胞调控网络,但现有的方法主要推断相关性而不是因果关系。我们开发了统计模型和似然比检验,以使用增强子 RNA(eRNA)表达信息作为因果锚点来推断因果基因调控网络,并将该框架应用于 FANTOM 联盟的 eRNA 和转录本表达数据。在小鼠胚胎干细胞、巨噬细胞和红细胞白血病中,转录因子(TFs)的预测因果靶标与 ChIP-seq 和扰动数据中的实验验证靶标显著重叠。我们通过考虑到一些 TF 可能以定量、剂量依赖的方式起作用,而另一些 TF 可能主要以二进制开/关方式起作用,进一步改进了模型。我们预测了 TF 靶标,这些靶标来自单个细胞类型内的 eRNA 和 TF 及其靶标启动子表达水平的协同变化,以及多个细胞类型之间的变化。重要的是,这两种分析之间具有高可信度预测的 TF 有很大的不同,这表明细胞类型内的可变性对于细胞类型特异性因子的靶标预测非常重要。最后,我们生成了一个跨多种人类细胞和组织类型的高可信度 TF 靶标综合数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da3/6274755/50b997bf79ff/ijms-19-03609-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验