Suppr超能文献

在临床试验环境中使用电子病历进行自动化安全事件监测:使用 VA NEPHRON-D 试验进行验证研究。

Automated safety event monitoring using electronic medical records in a clinical trial setting: Validation study using the VA NEPHRON-D trial.

机构信息

1 Cooperative Studies Program Coordinating Center (CSPCC), VA Connecticut Healthcare System, West Haven, CT, USA.

2 Department of Biostatistics, The University of Iowa, Iowa City, IA, USA.

出版信息

Clin Trials. 2019 Feb;16(1):81-89. doi: 10.1177/1740774518813121. Epub 2018 Nov 16.

Abstract

BACKGROUND/AIMS: Electronic medical records are now frequently used for capturing patient-level data in clinical trials. Within the Veterans Affairs health care system, electronic medical record data have been widely used in clinical trials to assess eligibility, facilitate referrals for recruitment, and conduct follow-up and safety monitoring. Despite the potential for increased efficiency in using electronic medical records to capture safety data via a centralized algorithm, it is important to evaluate the integrity and accuracy of electronic medical record-captured data. To this end, this investigation assesses data collection, both for general and study-specific safety endpoints, by comparing electronic medical record-based safety monitoring versus safety data collected during the course of the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) clinical trial.

METHODS

The VA NEPHRON-D study was a multicenter, double-blind, randomized clinical trial designed to compare the effect of combination therapy (losartan plus lisinopril) versus monotherapy (losartan) on the progression of kidney disease in individuals with diabetes and proteinuria. The trial's safety outcomes included serious adverse events, hyperkalemia, and acute kidney injury. A subset of the participants (~62%, n = 895) enrolled in the trial's long-term follow-up sub-study and consented to electronic medical record data collection. We applied an automated algorithm to search and capture safety data using the VA Corporate Data Warehouse which houses electronic medical record data. Using study safety data reported during the trial as the gold standard, we evaluated the sensitivity and precision of electronic medical record-based safety data and related treatment effects.

RESULTS

The sensitivity of the electronic medical record-based safety for hospitalizations was 65.3% without non-VA hospitalization events and 92.3% with the non-VA hospitalization events included. The sensitivity was only 54.3% for acute kidney injury and 87.3% for hyperkalemia. The precision of electronic medical record-based safety data was 89.4%, 38%, and 63.2% for hospitalization, acute kidney injury, and hyperkalemia, respectively. Relative treatment differences under the study and electronic medical record settings were 15% and 3% for hospitalization, 123% and 29% for acute kidney injury, and 238% and 140% for hyperkalemia, respectively.

CONCLUSION

The accuracy of using automated electronic medical record safety data depends on the events of interest. Identification of all-cause hospitalizations would be reliable if search methods could, in addition to VA hospitalizations, also capture non-VA hospitalizations. However, hospitalization is different from a cause-specific serious adverse event that could be more sensitive to treatment effects. In addition, some study-specific safety events were not easily identified using the electronic medical records. This limits the effectiveness of the automated central database search for purposes of safety monitoring. Hence, this data captured approach should be carefully considered when implementing endpoint data collection in future pragmatic trials.

摘要

背景/目的:电子病历现在常用于临床试验中捕获患者水平的数据。在退伍军人事务部医疗保健系统中,电子病历数据已广泛用于临床试验,以评估合格性,促进招募转诊,并进行随访和安全性监测。尽管通过集中算法使用电子病历捕获安全性数据可以提高效率,但评估电子病历捕获数据的完整性和准确性非常重要。为此,本研究通过比较电子病历监测的安全性数据与退伍军人事务部肾脏病与糖尿病(VA NEPHRON-D)临床试验期间收集的安全性数据,评估了一般和研究特定安全性终点的数据收集情况。

方法

VA NEPHRON-D 研究是一项多中心、双盲、随机临床试验,旨在比较联合治疗(氯沙坦加赖诺普利)与单药治疗(氯沙坦)对糖尿病和蛋白尿患者肾脏疾病进展的影响。该试验的安全性结局包括严重不良事件、高钾血症和急性肾损伤。试验的一部分参与者(~62%,n=895)参加了试验的长期随访子研究,并同意收集电子病历数据。我们应用自动算法在 VA 公司数据仓库中搜索和捕获安全性数据,该仓库存储电子病历数据。使用试验期间报告的研究安全性数据作为金标准,我们评估了基于电子病历的安全性数据的敏感性和精度以及相关的治疗效果。

结果

基于电子病历的安全性数据对于住院治疗的敏感性为 65.3%,不包括非退伍军人事务部的住院治疗事件,包括非退伍军人事务部的住院治疗事件时敏感性为 92.3%。对于急性肾损伤和高钾血症,敏感性分别为 54.3%和 87.3%。基于电子病历的安全性数据的精度分别为住院治疗、急性肾损伤和高钾血症的 89.4%、38%和 63.2%。研究和电子病历设置下的相对治疗差异分别为住院治疗 15%和 3%、急性肾损伤 123%和 29%以及高钾血症 238%和 140%。

结论

使用自动电子病历安全性数据的准确性取决于关注的事件。如果搜索方法除了退伍军人事务部的住院治疗外,还可以捕获非退伍军人事务部的住院治疗,那么对所有原因的住院治疗的识别将是可靠的。然而,住院治疗与特定原因的严重不良事件不同,后者可能对治疗效果更敏感。此外,一些研究特定的安全性事件不容易通过电子病历识别。这限制了自动化中央数据库搜索用于安全性监测的有效性。因此,在未来的实用试验中实施终点数据收集时,应仔细考虑这种数据捕获方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验