Gálvez Sergio, Mérida-García Rosa, Camino Carlos, Borrill Philippa, Abrouk Michael, Ramírez-González Ricardo H, Biyiklioglu Sezgi, Amil-Ruiz Francisco, Dorado Gabriel, Budak Hikmet, Gonzalez-Dugo Victoria, Zarco-Tejada Pablo J, Appels Rudi, Uauy Cristobal, Hernandez Pilar
Departamento de Lenguajes y Ciencias de la Computación, ETSI Informática, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain.
Funct Integr Genomics. 2019 Mar;19(2):295-309. doi: 10.1007/s10142-018-0639-3. Epub 2018 Nov 16.
Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.
小麦能够适应温带地区的大多数农业条件。这一成功得益于其由三个同源基因组(A、B和D)组成的庞大而复杂的基因组所赋予的表型可塑性。尽管干旱是导致小麦产量和品质损失的主要原因,但田间干旱响应的适应性机制和基因网络在很大程度上仍不为人知。在此,我们通过采用一种跨学科方法来解决这一问题,该方法包括田间水分状况表型分析、采样和基因表达分析。总体而言,转录水平的变化反映在适合田间水平生理测量的植物光谱特征中,尽管发现光合作用相关途径的变化可能受到更复杂的转录后调控。通过研究A、B和D基因组中具有1:1:1关系的同源基因(三联体),我们揭示了田间条件下干旱响应的复杂基因组结构,涉及基因同源物特化、多个基因簇、基因家族、微小RNA以及协调这些响应的转录因子。我们的研究结果为耐旱小麦品种的基因组辅助育种提供了新的重点。