School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, PR China.
Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, PR China.
Water Res. 2019 Feb 1;149:190-201. doi: 10.1016/j.watres.2018.10.094. Epub 2018 Nov 9.
Soluble Mn(III) species stabilized by natural organic matter (NOM) plays a crucial role in a number of biogeochemical processes. To date, current understanding of these phenomena has been primarily concerned on the occurrence and chemistry of soluble NOM-Mn(III) complexes; much less is known regarding the formation and stability of NOM-Mn(III) colloids in the environment. This presents a critical knowledge gap with regard to biogeochemical cycling of manganese and associated carbon, and for predicting the fate and transport of colloid-associated contaminants, nutrients, and trace metals. In this work, we have characterized the chemical and physical properties of humic acid based (HA)-Mn(III) colloids formed over a range of environmentally relevant conditions and quantified their subsequent aggregation and stability behaviors. Results show that molar C/Mn ratios and HA types (Aldrich HA (AHA) and Pahokee peat soil HA (PPSHA)) are critical factors influencing HA-Mn(III) colloidal properties. Both the amount and the stability of HA-Mn(III) colloids increased with increasing initial molar C/Mn ratios, regardless of HA type. The correlation between the critical coagulation concentration (CCC) and zeta potential (R > 0.97) suggests that both Derjaguin-Landau-Verwey-Overbeek (DLVO) type and non-DLVO interactions are responsible for enhanced stability of HA-Mn(III) colloids. For a given C/Mn ratio, PPSHA-Mn(III) colloids are significantly more stable against aggregation than AHA-Mn(III) colloids, which is likely due to stronger electrostatic interactions, hydration interactions, and steric hindrance. Further examination in real-world waters indicates that the HA-Mn(III) colloids are highly stable in surface river water, but become unstable (i.e. extensive aggregation) in solutions representing a groundwater-seawater interaction zone. Overall, this study provides new insights into the formation and stability of NOM-Mn(III) colloids which are critical for understanding Mn-based colloidal behavior(s), and thus Mn cycling processes, in aquatic systems.
天然有机物(NOM)稳定的可溶性 Mn(III) 物种在许多生物地球化学过程中起着至关重要的作用。迄今为止,人们对这些现象的认识主要集中在可溶性 NOM-Mn(III) 配合物的存在和化学性质上;而对于环境中 NOM-Mn(III) 胶体的形成和稳定性则知之甚少。这就形成了一个关于锰及其相关碳的生物地球化学循环以及预测胶体相关污染物、营养物质和痕量金属的命运和迁移的关键知识空白。在这项工作中,我们已经对在一系列环境相关条件下形成的基于腐殖酸的(HA)-Mn(III) 胶体的化学和物理性质进行了表征,并量化了它们随后的聚集和稳定性行为。结果表明,摩尔 C/Mn 比和 HA 类型(Aldrich HA (AHA) 和 Pahokee 泥炭土壤 HA (PPSHA))是影响 HA-Mn(III) 胶体性质的关键因素。无论 HA 类型如何,HA-Mn(III) 胶体的数量和稳定性都随着初始摩尔 C/Mn 比的增加而增加。临界聚沉浓度 (CCC) 和 ζ 电位之间的相关性(R>0.97)表明,DLVO 型和非 DLVO 相互作用都对增强 HA-Mn(III) 胶体的稳定性负责。对于给定的 C/Mn 比,PPSHA-Mn(III) 胶体对聚集的稳定性明显高于 AHA-Mn(III) 胶体,这可能是由于静电相互作用、水合相互作用和空间位阻更强所致。在实际水体中的进一步研究表明,HA-Mn(III) 胶体在地表水表面高度稳定,但在代表地下水-海水相互作用区的溶液中变得不稳定(即广泛聚集)。总的来说,这项研究为 NOM-Mn(III) 胶体的形成和稳定性提供了新的见解,这对于理解基于锰的胶体行为及其在水生系统中的锰循环过程至关重要。