State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, NO. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430074, P. R. China.
Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Environ Sci Technol. 2020 Apr 7;54(7):4256-4266. doi: 10.1021/acs.est.9b07934. Epub 2020 Mar 20.
Natural organic matter-iron (NOM-Fe) colloids are ubiquitous at anoxic-oxic interfaces of subsurface environments. Fe(II) or NOM can chemically reduce Cr(VI) to Cr(III), and the formation of Cr(III)-NOM-Fe colloids can control the fate and transport of Cr. We explored the formation and transport of Cr(III)-humic acid (HA)-Fe colloids upon reaction of Cr(VI) with HA-Fe(II) colloids over a range of environmentally relevant conditions. Cr(VI) was completely reduced by HA-Fe(II) complexes under anoxic conditions, and the formation of Cr(III)-HA-Fe colloids depended on HA concentration (or molar C/Fe ratio) and redox conditions. No colloids formed at HA concentrations below 3.5 mg C/L (C/Fe ratio below 1.6), but Cr(III)-HA-Fe colloids formed at higher HA concentrations. In column experiments, Cr(III)-HA-Fe(III) colloids formed under oxic conditions were readily transported through sand-packed porous media. Colloidal stability measurements further suggest that Cr(III)-HA-Fe colloids are highly stable and persist for at least 20 days without substantial change in particle size. This stability is attributed to the enrichment of free HA adsorbed on the Cr(III)-HA-Fe colloid surfaces, intensifying the electrostatic and/or steric repulsion interactions between particles. The new insights provided here are important for evaluating the long-term fate and transport of Cr in organic-rich redox transition zones.
天然有机物质-铁(NOM-Fe)胶体在地下环境的缺氧-好氧界面无处不在。Fe(II)或 NOM 可以将 Cr(VI)化学还原为 Cr(III),而 Cr(III)-NOM-Fe 胶体的形成可以控制 Cr 的命运和迁移。我们在一系列与环境相关的条件下,研究了 Cr(VI)与 HA-Fe(II)胶体反应时 Cr(III)-腐殖酸(HA)-Fe 胶体的形成和迁移。在缺氧条件下,Cr(VI)完全被 HA-Fe(II)配合物还原,Cr(III)-HA-Fe 胶体的形成取决于 HA 浓度(或摩尔 C/Fe 比)和氧化还原条件。在 HA 浓度低于 3.5mg C/L(C/Fe 比低于 1.6)时,没有胶体形成,但在较高的 HA 浓度下形成 Cr(III)-HA-Fe 胶体。在柱实验中,在好氧条件下形成的 Cr(III)-HA-Fe(III)胶体很容易通过沙填充多孔介质传输。胶体稳定性测量进一步表明,Cr(III)-HA-Fe 胶体非常稳定,在没有明显粒径变化的情况下至少可以稳定 20 天。这种稳定性归因于自由 HA 在 Cr(III)-HA-Fe 胶体表面的吸附富集,增强了颗粒之间的静电和/或空间排斥相互作用。这里提供的新见解对于评估富含有机物的氧化还原过渡带中 Cr 的长期命运和迁移非常重要。