Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia.
Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia.
Sci Total Environ. 2019 Mar 1;654:365-377. doi: 10.1016/j.scitotenv.2018.11.092. Epub 2018 Nov 10.
The loss and degradation of mangroves can result in potentially significant sources of atmospheric greenhouse gas (GHG) emissions. For mangrove rehabilitation carbon projects, quantifying GHG emissions as forests regenerate is a key accounting requirement. The current study is one of the first attempts to systematically quantify emissions of carbon dioxide (CO), nitrous oxide (NO) and methane (CH) from: 1) aquaculture ponds, 2) rehabilitating mangroves, and 3) intact mangrove sites and frame GHG flux within the context of landuse change. In-situ static chamber measurements were made at three contrasting locations in Sulawesi, Indonesia. The influence of key biophysical variables known to affect GHG flux was also assessed. Peak GHG flux was observed at rehabilitating (32.8 ± 2.1 Mg COe ha y) and intact, mature reference sites (43.8 ± 4.5 Mg COe ha y) and a dry, exposed disused aquaculture pond (30.6 ± 1.9 Mg COe ha y). Emissions were negligible at low productivity rehabilitating sites with high hydroperiod (mean 1.0 ± 0.1 Mg COe ha y) and an impounded, operational aquaculture pond (1.1 ± 0.2 Mg COe ha y). Heterogeneity in biophysical conditions and geomorphic position exerted a strong influence on GHG flux, with the longer hydroperiod and higher soil moisture content of seaward fringing mangroves correlated with decreased fluxes. A greater abundance of Mud lobster mounds and root structures in landward mangroves correlated to higher flux. When viewed across a landuse change continuum, our results suggest that the initial conversion of mangroves to aquaculture ponds releases extremely high rates of GHGs. Furthermore, the re-institution of hydrological regimes in dry, disused aquaculture ponds to facilitate tidal flushing is instrumental in rapidly mediating GHG flux, leading to a significant reduction in baseline emissions. This is an important consideration for forest carbon project proponents seeking to maximise creditable GHG emissions reductions and removals.
红树林的损失和退化可能导致大气温室气体(GHG)排放的潜在重要来源。对于红树林恢复碳项目,量化森林再生过程中的温室气体排放是关键的核算要求。本研究旨在首次尝试系统地量化二氧化碳(CO)、氧化亚氮(NO)和甲烷(CH)的排放:1)水产养殖池塘,2)恢复中的红树林,以及 3)完整的红树林地点,并在土地利用变化的背景下框定温室气体通量。在印度尼西亚苏拉威西的三个不同地点进行了原位静态室测量。还评估了已知影响温室气体通量的关键生物物理变量的影响。在恢复中的(32.8±2.1 Mg COe ha y)和完整的、成熟的参考地点(43.8±4.5 Mg COe ha y)以及干燥、暴露的废弃水产养殖池塘(30.6±1.9 Mg COe ha y)观察到峰值温室气体通量。在高生产力、高水位期的恢复中地点(平均 1.0±0.1 Mg COe ha y)和一个有堤坝、运营中的水产养殖池塘(1.1±0.2 Mg COe ha y),排放可以忽略不计。在生物物理条件和地貌位置存在差异的情况下,GHG 通量受到强烈影响,向海的边缘红树林具有较长的水期和较高的土壤含水量,与之相关的通量较低。内陆红树林中泥蟹丘和根结构的大量存在与更高的通量相关。从土地利用变化的连续体来看,我们的结果表明,红树林最初转化为水产养殖池塘会释放出极高水平的温室气体。此外,在干燥、废弃的水产养殖池塘中恢复水文条件,以促进潮汐冲洗,对于快速调节温室气体通量至关重要,从而显著减少基准排放量。这是寻求最大限度地减少可信的温室气体排放减少和清除的森林碳项目提议人的一个重要考虑因素。