Suppr超能文献

坦桑尼亚乞力马扎罗山地区气候和土地利用对热带生态系统氮氧化物和甲烷通量的影响。

Impacts of climate and land use on N O and CH fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

机构信息

Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany.

Tanzania National Parks, Arusha, Tanzania.

出版信息

Glob Chang Biol. 2018 Mar;24(3):1239-1255. doi: 10.1111/gcb.13944. Epub 2017 Nov 28.

Abstract

In this study, we quantify the impacts of climate and land use on soil N O and CH fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N O and CH respectively. N O emissions correlated positively with soil moisture and total soil nitrogen content. CH uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N O emissions of tropical montane forests were generally low (<1.2 kg N ha  year ), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha  year ). Forest soils with well-aerated litter layers were a significant sink for atmospheric CH (up to 4 kg C ha  year ) regardless of low mean annual temperatures at higher elevations. Land-use intensification significantly increased the soil N O source strength and significantly decreased the soil CH sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non-CO GHG emissions following land-use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land-use change.

摘要

在这项研究中,我们量化了气候和土地利用对非洲热带森林、农林复合、耕地和稀树草原生态系统土壤氮氧化物和 CH 通量的影响。为此,我们沿着乞力马扎罗山的气候和土地利用梯度,结合长期原位室和实验室土壤芯培养技术,测量了 12 个不同生态系统的温室气体 (GHG) 通量。这两种方法都显示出相似的 GHG 交换模式。尽管不同的生态系统之间存在明显的差异,但土壤通常是氮氧化物和 CH 的净源和汇。氮氧化物排放量与土壤水分和总土壤氮含量呈正相关。CH 吸收速率与土壤水分和粘粒含量呈负相关,与 SOC 呈正相关。由于土壤水分含量适中,土壤氮转化中硝化作用占主导地位,因此热带山地森林的氮氧化物排放量通常较低(<1.2 kg N ha 年),生态系统的氮损失可能是由硝酸盐淋失(~10 kg N ha 年)驱动的。具有通气良好的凋落物层的森林土壤是大气 CH 的重要汇(高达 4 kg C ha 年),而较高海拔地区的年平均温度较低。土地利用集约化显著增加了土壤氮氧化物的源强度,显著降低了土壤 CH 的汇。与地上和地下碳储量的减少相比,热带森林向家庭花园和咖啡种植园的土地利用转化后,土壤非 CO GHG 排放的增加仅占总 GHG 预算的一小部分。然而,由于生态系统碳储量变化较小,氮氧化物排放的增加显著增加了草原和特别是玉米转化为草原后的总 GHG 排放。总的来说,我们发现保护和可持续管理农林复合和耕地系统的地上和地下碳氮储量对于缓解土地利用变化引起的 GHG 排放至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验