Commenges Daniel
INSERM, U 1219, Bordeaux University, 33076, Bordeaux, France.
Lifetime Data Anal. 2019 Jul;25(3):381-405. doi: 10.1007/s10985-018-9454-3. Epub 2018 Nov 17.
The stochastic system approach to causality is applied to situations where the risk of death is not negligible. This approach grounds causality on physical laws, distinguishes system and observation and represents the system by multivariate stochastic processes. The particular role of death is highlighted, and it is shown that local influences must be defined on the random horizon of time of death. We particularly study the problem of estimating the effect of a factor V on a process of interest Y, taking death into account. We unify the cases where Y is a counting process (describing an event) and the case where Y is quantitative; we examine the case of observations in continuous and discrete time and we study the issue of whether the mechanism leading to incomplete data can be ignored. Finally, we give an example of a situation where we are interested in estimating the effect of a factor (blood pressure) on cognitive ability in elderly.
因果关系的随机系统方法应用于死亡风险不可忽略的情况。这种方法将因果关系建立在物理定律的基础上,区分系统和观测,并通过多元随机过程来表示系统。突出了死亡的特殊作用,并且表明必须在死亡时间的随机范围内定义局部影响。我们特别研究了在考虑死亡因素的情况下,估计因素V对感兴趣过程Y的影响问题。我们统一了Y是计数过程(描述一个事件)的情况和Y是定量的情况;我们研究了连续时间和离散时间观测的情况,并且探讨了导致数据不完整的机制是否可以忽略的问题。最后,我们给出一个例子,说明我们感兴趣于估计一个因素(血压)对老年人认知能力的影响。