Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States.
Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, SC 29302, United States.
Bioelectrochemistry. 2019 Feb;125:116-126. doi: 10.1016/j.bioelechem.2018.10.003. Epub 2018 Oct 19.
Modified electrodes featuring specific adsorption platforms able to access the electrochemistry of the copper containing enzyme galactose oxidase (GaOx) were explored, including interfaces featuring nanomaterials such as nanoparticles and carbon nanotubes (CNTs). Electrodes modified with various self-assembled monolayers (SAMs) including those with attached nanoparticles or amide-coupled functionalized CNTs were examined for their ability to effectively immobilize GaOx and study the redox activity related to its copper core. While stable GaOx electrochemistry has been notoriously difficult to achieve at modified electrodes, strategically designed functionalized CNT-based interfaces, cysteamine SAM-modified electrode subsequently amide-coupled to carboxylic acid functionalized single wall CNTs, were significantly more effective with high GaOx surface adsorption along with well-defined, more reversible, stable (≥ 8 days) voltammetry and an average ET rate constant of 0.74 s in spite of increased ET distance - a result attributed to effective electronic coupling at the GaOx active site. Both amperometric and fluorescence assay results suggest embedded GaOx remains active. Fundamental ET properties of GaOx may be relevant to biosensor development targeting galactosemia while the use functionalized CNT platforms for adsorption/electrochemistry of electroactive enzymes/proteins may present an approach for fundamental protein electrochemistry and their future use in both direct and indirect biosensor schemes.
研究了具有特定吸附平台的修饰电极,这些平台能够接触到含铜酶半乳糖氧化酶 (GaOx) 的电化学,包括具有纳米材料(如纳米颗粒和碳纳米管 (CNT))的界面。研究了各种自组装单层 (SAM) 修饰的电极,包括附着有纳米颗粒或酰胺偶联功能化 CNT 的 SAM,以考察它们有效固定 GaOx 的能力,并研究与其铜核相关的氧化还原活性。虽然在修饰电极上实现稳定的 GaOx 电化学一直是一个难题,但经过策略设计的基于功能化 CNT 的界面,巯基乙胺 SAM 修饰的电极随后与羧酸功能化单壁 CNT 酰胺偶联,具有更高的 GaOx 表面吸附能力,以及更明确、更可逆、更稳定(≥8 天)的伏安法,并且 ET 速率常数平均为 0.74 s,尽管 ET 距离增加了 - 这一结果归因于 GaOx 活性位点的有效电子偶联。安培和荧光测定结果均表明嵌入的 GaOx 保持活性。GaOx 的基本 ET 性质可能与针对半乳糖血症的生物传感器开发有关,而使用功能化 CNT 平台进行电化学酶/蛋白质的吸附可能为基础蛋白质电化学提供一种方法,并为直接和间接生物传感器方案的未来应用提供一种方法。