Suppr超能文献

生长锥转向中微管与肌动蛋白动力学协调模型

Model for Coordination of Microtubule and Actin Dynamics in Growth Cone Turning.

作者信息

Craig Erin M

机构信息

Department of Physics, Central Washington University, Ellensburg, WA, United States.

出版信息

Front Cell Neurosci. 2018 Oct 31;12:394. doi: 10.3389/fncel.2018.00394. eCollection 2018.

Abstract

In the developing nervous system, axons are guided to their synaptic targets by motile structures at the axon tip called growth cones, which reorganize their cytoskeleton in order to steer in response to chemotactic cues. Growth cone motility is mediated by an actin-adhesion "clutch" mechanism, in which mechanical attachment to a substrate, coupled with polarized actin growth, produces leading-edge protrusion. Several studies suggest that dynamic microtubules (MTs) in the growth cone periphery play an essential role in growth cone steering. It is not yet well-understood how the MT cytoskeleton and the dynamic actin-adhesion clutch system are coordinated to promote growth cone navigation. I introduce an experimentally motivated stochastic model of the dynamic reorganization of the growth cone cytoskeleton in response to external guidance cues. According to this model, asymmetric decoupling of MTs from actin retrograde flow leads to a local influx of MTs to the growth cone leading edge, and the leading-edge MT accumulation is amplified by positive feedback between MTs and the actin-adhesion clutch system. Local accumulation of MTs at the leading edge is hypothesized to increase actin adhesion to the substrate, which attenuates actin retrograde flow and promotes leading-edge protrusion. Growth cone alignment with the chemotactic gradient is predicted to be most effective for intermediate levels of sensitivity of the adhesion strength to the presence of leading-edge MTs. Quantitative predictions of the MT distribution and the local rate of retrograde actin flow will allow the hypothetical positive feedback mechanism to be experimentally tested.

摘要

在发育中的神经系统中,轴突由轴突末端的运动结构——生长锥引导至其突触靶点,生长锥会重新组织其细胞骨架,以便根据趋化线索转向。生长锥的运动由一种肌动蛋白 - 黏附“离合器”机制介导,在这种机制中,与底物的机械附着以及极化的肌动蛋白生长共同产生前沿突起。多项研究表明,生长锥周边的动态微管(MTs)在生长锥转向中起着至关重要的作用。目前尚不清楚微管细胞骨架与动态肌动蛋白 - 黏附离合器系统是如何协调以促进生长锥导航的。我引入了一个基于实验的随机模型,用于描述生长锥细胞骨架响应外部引导线索的动态重组。根据该模型,微管与肌动蛋白逆行流的不对称解耦导致微管局部流入生长锥前沿,并且前沿微管的积累通过微管与肌动蛋白 - 黏附离合器系统之间的正反馈得以放大。前沿微管的局部积累被假定会增加肌动蛋白与底物的黏附,从而减弱肌动蛋白逆行流并促进前沿突起。预计生长锥与趋化梯度的对齐对于黏附强度对前沿微管存在的敏感度处于中间水平时最为有效。对微管分布和肌动蛋白逆行流局部速率的定量预测将使这种假设的正反馈机制能够得到实验验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验