González Iván R R, Raposo Ernesto P, Macêdo Antônio M S, de S Menezes Leonardo, Gomes Anderson S L
Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil.
Departamento de Física, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil.
Sci Rep. 2018 Nov 19;8(1):17046. doi: 10.1038/s41598-018-35434-z.
Coexistence of physical phenomena can occur in quite unexpected ways. Here we demonstrate the first evidence in any physical system of the coexistence in the same set of measurements of two of the most challenging phenomena in complex systems: turbulence and spin glasses. We employ a quasi-one-dimensional random fibre laser, which displays all essential ingredients underlying both behaviours, namely disorder, frustration and nonlinearity, as well as turbulent energy cascades and intermittent energy flux between fluctuation scales. Our extensive experimental results are theoretically supported by a newly defined photonic Pearson correlation coefficient that unveils the role of the intermittency and describes remarkably well both the spin-glass Parisi overlap parameter and the distribution of turbulent-like intensity increments. Our findings open the way to unravel subtle connections with other complex phenomena, such as disordered nonlinear wave propagation, Lévy statistics of intensity fluctuations, and rogue waves.
物理现象的共存可能以相当意想不到的方式出现。在这里,我们展示了在任何物理系统中首次出现的证据,即在同一组测量中,复杂系统中两个最具挑战性的现象——湍流和自旋玻璃——的共存。我们使用了一种准一维随机光纤激光器,它展示了这两种行为背后的所有基本要素,即无序、阻挫和非线性,以及湍流能量级联和波动尺度之间的间歇性能量通量。我们广泛的实验结果在理论上得到了一个新定义的光子皮尔逊相关系数的支持,该系数揭示了间歇性的作用,并非常好地描述了自旋玻璃的帕里西重叠参数和类似湍流的强度增量分布。我们的发现为揭示与其他复杂现象的微妙联系开辟了道路,如无序非线性波传播、强度涨落的 Lévy 统计和 rogue 波。