Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
Nanoscale. 2018 Nov 29;10(46):22044-22054. doi: 10.1039/c8nr07921h.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is one of the most efficient mass spectrometric techniques for the analysis of high-molecular-weight compounds with superior selectivity and sensitivity. Common MALDI matrices are low molecular weight (LMW) organics and will therefore produce a large amount of matrix-related ion peaks, which limits the use of MALDI-MS for the detection of LMW molecules. A major breakthrough of this limitation was made by the introduction of surface assisted desorption/ionization techniques, with graphite particles firstly as the matrix, followed by expansion into other types of nanoparticles or nanostructures. However, previous studies failed to address well the optimum size and concentration of Ag NPs to be used as the MALDI matrix. In this study, to explore and compare the efficiency of different sized silver nanoparticles (Ag NPs) as the MALDI matrix for the detection of LMW molecules, three different sized Ag NPs (2.8 ± 1.0, 12.8 ± 3.2 and 44.2 ± 5.0 nm) have been successfully developed as the MALDI time-of-flight MS (MALDI-TOF MS) matrix and amyloid-beta (Aβ) peptides, crucially involved in Alzheimer's disease and a variety of cancers, were chosen as an example of LMW molecules in our MALDI-TOF MS analysis with Ag NPs as matrices. The results showed size-selected MS signals with the smallest (2.8 ± 1.0 nm) Ag NP matrix producing the highest spectral intensities, when compared with other larger sized Ag NP matrices and conventional matrices such as SA and DHB. Furthermore, the optimal concentrations for different sized Ag NPs as matrices were determined as follows: 0.125 nM (2.8 ± 1.0 nm Ag NPs), 0.0625 nM (12.8 ± 3.2 nm Ag NPs), and 0.03125 nM (44.2 ± 5.0 nm Ag NPs), respectively. These results not only corroborated that Ag NPs could act as a very suitable matrix to assist in the desorption/ionization of LMW molecules but also revealed size-selected mass spectrometry signals with smaller Ag NPs as the MALDI matrix bearing more advantages than their larger counterparts. These novel findings paved the way for wider applications of MALDI-MS using Ag NPs as matrices for the analysis of LMW molecules.
基质辅助激光解吸/电离质谱(MALDI-MS)是分析高分子量化合物的最有效质谱技术之一,具有出色的选择性和灵敏度。常见的 MALDI 基质是低分子量(LMW)有机物,因此会产生大量基质相关的离子峰,这限制了 MALDI-MS 用于检测 LMW 分子的用途。这一限制的一个重大突破是引入了表面辅助解吸/电离技术,首先使用石墨颗粒作为基质,然后扩展到其他类型的纳米粒子或纳米结构。然而,以前的研究未能很好地解决用作 MALDI 基质的 Ag NPs 的最佳尺寸和浓度问题。在这项研究中,为了探索和比较不同尺寸的银纳米粒子(Ag NPs)作为 MALDI 基质检测 LMW 分子的效率,成功开发了三种不同尺寸的 Ag NPs(2.8±1.0、12.8±3.2 和 44.2±5.0nm)作为 MALDI 飞行时间质谱(MALDI-TOF MS)基质,选择淀粉样β(Aβ)肽作为 LMW 分子的一个例子,在我们的 MALDI-TOF MS 分析中使用 Ag NPs 作为基质。结果表明,与其他较大尺寸的 Ag NP 基质和传统基质(如 SA 和 DHB)相比,尺寸选择的 MS 信号具有最小(2.8±1.0nm)Ag NP 基质产生的最高光谱强度。此外,不同尺寸的 Ag NPs 作为基质的最佳浓度分别确定为:0.125 nM(2.8±1.0nm Ag NPs)、0.0625 nM(12.8±3.2nm Ag NPs)和 0.03125 nM(44.2±5.0nm Ag NPs)。这些结果不仅证实了 Ag NPs 可以作为非常合适的基质来辅助 LMW 分子的解吸/电离,而且还揭示了具有较小 Ag NPs 的尺寸选择质谱信号比其较大对应物具有更多优势。这些新发现为使用 Ag NPs 作为基质分析 LMW 分子的 MALDI-MS 的更广泛应用铺平了道路。