State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China.
Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.
Environ Sci Technol. 2018 Dec 4;52(23):13718-13727. doi: 10.1021/acs.est.8b03618. Epub 2018 Nov 19.
Gravity-driven membranes (GDM) generally achieve high retention performance in filtration of organic matter with a smaller size than the membrane pore, yet the in-depth mechanism remains unclear. Thorough analysis of the retention mechanism is crucial for optimizing GDM properties and improving GDM filtration performance. The performance and interaction mechanism of gravity-driven ceramic membrane (GDCM) filtrating smaller organic matter (SOM) were systematically studied. Rejection rate grew noticeably for like-charged foulant, whereas it only grew slightly for opposite-charged foulant as operation height decreased. Flux declined more seriously at lower operation height, probably due to heavier cake fouling caused by the rejected foulant. Interactions of ceramic membrane-SOM were analyzed through extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO) and hydrodynamic permeation drag (PD). Among van der Waals (LW), acid-base (AB), and electrostatic (EL) forces in XDLVO, EL played a significant role on GDCM filtrating SOM, and altering membrane electrostatic property could greatly influence SOM filtration. Furthermore, the rising PD force largely weakened the EL dominant zone with operation height increasing, while barely influencing the LW and AB dominant zones. Therefore, the weakened EL-dominant repulsive zone caused less rejection of like-charged foulant with operation height increasing. FeO- and MnO-modified membranes further validated the comprehensive influence of LW, AB, EL, and PD interactions on GDCM filtration. The possible "trade-off" of pore blocking-cake fouling with operation height decreasing demonstrated potential enhancement for both rejection and antifouling performance by electrically modified membrane under ultralow pressure. This study provides insight on membrane selection/preparation/modification and performance control of ultralow pressure-driven filtration.
重力驱动膜(GDM)在过滤比膜孔小的有机物时通常能实现较高的截留性能,但其中的深层机制仍不清楚。彻底分析截留机制对于优化 GDM 性能和提高 GDM 过滤性能至关重要。本研究系统研究了重力驱动陶瓷膜(GDCM)过滤小有机污染物(SOM)的性能和相互作用机制。随着操作高度的降低,带相同电荷的污染物的截留率显著增加,而带相反电荷的污染物的截留率仅略有增加。在较低的操作高度下通量下降更为严重,这可能是由于被截留的污染物导致更严重的滤饼污染。通过扩展的德加古恩-兰德劳-弗韦尔-奥弗贝克理论(XDLVO)和流体动力学渗透阻力(PD)分析了陶瓷膜-SOM 的相互作用。在 XDLVO 中的范德华(LW)、酸碱(AB)和静电(EL)力中,EL 对 GDCM 过滤 SOM 起着重要作用,改变膜的静电特性会极大地影响 SOM 过滤。此外,随着操作高度的增加,PD 力的上升极大地削弱了 EL 主导区,而对 LW 和 AB 主导区几乎没有影响。因此,随着操作高度的增加,EL 主导的排斥区减弱,导致对带相同电荷的污染物的截留率降低。FeO-和 MnO 改性膜进一步验证了 LW、AB、EL 和 PD 相互作用对 GDCM 过滤的综合影响。随着操作高度的降低,孔堵塞-滤饼污染的“权衡”可能会通过在超低压力下对膜进行电改性,提高截留率和抗污染性能。本研究为超低压力驱动过滤的膜选择/制备/改性和性能控制提供了新的思路。