Suppr超能文献

用于太赫兹波段体内纳尺度通信系统的调制模式检测与分类。

Modulation Mode Detection and Classification for In Vivo Nano-Scale Communication Systems Operating in Terahertz Band.

出版信息

IEEE Trans Nanobioscience. 2019 Jan;18(1):10-17. doi: 10.1109/TNB.2018.2882063. Epub 2018 Nov 19.

Abstract

This paper initiates the efforts to design an intelligent/cognitive nano receiver operating in terahertz band. Specifically, we investigate two essential ingredients of an intelligent nano receiver-modulation mode detection (to differentiate between pulse-based modulation and carrier-based modulation) and modulation classification (to identify the exact modulation scheme in use). To implement modulation mode detection, we construct a binary hypothesis test in nano-receiver's passband and provide closed-form expressions for the two error probabilities. As for modulation classification, we aim to represent the received signal of interest by a Gaussian mixture model (GMM). This necessitates the explicit estimation of the THz channel impulse response and its subsequent compensation (via deconvolution). We then learn the GMM parameters via expectation-maximization algorithm. We then do Gaussian approximation of each mixture density to compute symmetric Kullback-Leibler divergence in order to differentiate between various modulation schemes (i.e., M -ary phase shift keying and M -ary quadrature amplitude modulation). The simulation results on mode detection indicate that there exists a unique Pareto-optimal point (for both SNR and the decision threshold), where both error probabilities are minimized. The main takeaway message by the simulation results on modulation classification is that for a pre-specified probability of correct classification, higher SNR is required to correctly identify a higher order modulation scheme. On a broader note, this paper should trigger the interest of the community in the design of intelligent/cognitive nano receivers (capable of performing various intelligent tasks, e.g., modulation prediction, and so on).

摘要

本文旨在设计一种工作在太赫兹频段的智能/认知纳米接收器。具体来说,我们研究了智能纳米接收器的两个基本组成部分——调制模式检测(用于区分基于脉冲的调制和基于载波的调制)和调制分类(用于识别使用的精确调制方案)。为了实现调制模式检测,我们在纳米接收器的通带内构建了一个二进制假设检验,并提供了两种错误概率的闭式表达式。对于调制分类,我们旨在通过高斯混合模型(GMM)来表示感兴趣的接收信号。这需要明确估计太赫兹信道冲激响应,并通过反卷积对其进行补偿。然后,我们通过期望最大化算法学习 GMM 参数。我们对每个混合密度进行高斯逼近,以计算对称 Kullback-Leibler 散度,从而区分各种调制方案(即 M 进制相移键控和 M 进制正交幅度调制)。在模式检测的仿真结果表明,存在唯一的帕累托最优点(对于 SNR 和决策阈值),在该点两种错误概率都最小化。在调制分类的仿真结果中得出的主要结论是,对于指定的正确分类概率,需要更高的 SNR 才能正确识别更高阶的调制方案。更广泛地说,本文应该引起社区对智能/认知纳米接收器(能够执行各种智能任务,例如调制预测等)设计的兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验