Suppr超能文献

预测甲状腺乳头状癌(PTC)患者的颈部淋巴结转移——甲状腺切除术前行超声造影(CEUS)的原因。

Predicting cervical lymph node metastasis in patients with papillary thyroid cancer (PTC) - Why contrast-enhanced ultrasound (CEUS) was performed before thyroidectomy.

机构信息

Ultrasound Department, Zhongshan Hospital, Fudan University, Shanghai, China.

Ultrasound Department, Huadong Hospital, Fudan University, Shanghai, China.

出版信息

Clin Hemorheol Microcirc. 2019;72(1):61-73. doi: 10.3233/CH-180454.

Abstract

The objective of this research was to investigate the clinical value of contrast-enhanced ultrasound (CEUS) for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC).One hundred and eighty-six patients with PTC confirmed by fine needle aspiration (FNA) were preoperatively performed CEUS.A multivariate analysis was performed to predict CLNM by 15 independent variables. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance.There were totally 37 patients with CLNM confirmed by pathology. Multivariate analysis demonstrated that intensity at peak time, capsule contact and size on CEUS were the three strongest independent predictors for CLNM. ROC analyses of these characteristics showed the areas under the curve (Az), sensitivity, and specificity were 0.650, 48.6 %, 79.8 %; 0.586, 67.6%, 49.7%; and 0.612, 56.8%, 64.4% for intensity at peak time, capsule contact, and size, respectively.The CEUS patterns of PTC are relative to not only the size of PTC but also the possibility of CLNM after thyroidectomy. CEUS seem to be a tool to predict CLNM in PTC patients.

摘要

本研究旨在探讨超声造影(CEUS)对甲状腺乳头状癌(PTC)颈淋巴结转移(CLNM)的临床预测价值。

术前对 186 例经细针抽吸(FNA)证实的 PTC 患者进行 CEUS。通过 15 个独立变量进行多变量分析以预测 CLNM。采用受试者工作特征(ROC)曲线分析评估诊断性能。

病理证实共有 37 例 CLNM 患者。多变量分析表明,峰值强度、包膜接触和 CEUS 大小是 CLNM 的三个最强独立预测因子。这些特征的 ROC 分析显示,曲线下面积(Az)、敏感度和特异度分别为 0.650、48.6%、79.8%;0.586、67.6%、49.7%;0.612、56.8%、64.4%。

PTC 的 CEUS 模式不仅与 PTC 的大小有关,还与甲状腺切除术后 CLNM 的可能性有关。CEUS 似乎是预测 PTC 患者 CLNM 的一种工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验