Hartung Grant, Badr Shoale, Mihelic Samuel, Dunn Andrew, Cheng Xiaojun, Kura Sreekanth, Boas David A, Kleinfeld David, Alaraj Ali, Linninger Andreas A
Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA.
Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.
Microcirculation. 2021 Jul;28(5):e12687. doi: 10.1111/micc.12687. Epub 2021 Apr 8.
Recent advancements in multiphoton imaging and vascular reconstruction algorithms have increased the amount of data on cerebrovascular circulation for statistical analysis and hemodynamic simulations. Experimental observations offer fundamental insights into capillary network topology but mainly within a narrow field of view typically spanning a small fraction of the cortical surface (less than 2%). In contrast, larger-resolution imaging modalities, such as computed tomography (CT) or magnetic resonance imaging (MRI), have whole-brain coverage but capture only larger blood vessels, overlooking the microscopic capillary bed. To integrate data acquired at multiple length scales with different neuroimaging modalities and to reconcile brain-wide macroscale information with microscale multiphoton data, we developed a method for synthesizing hemodynamically equivalent vascular networks for the entire cerebral circulation. This computational approach is intended to aid in the quantification of patterns of cerebral blood flow and metabolism for the entire brain. In part I, we described the mathematical framework for image-guided generation of synthetic vascular networks covering the large cerebral arteries from the circle of Willis through the pial surface network leading back to the venous sinuses. Here in part II, we introduce novel procedures for creating microcirculatory closure that mimics a realistic capillary bed. We demonstrate our capability to synthesize synthetic vascular networks whose morphometrics match empirical network graphs from three independent state-of-the-art imaging laboratories using different image acquisition and reconstruction protocols. We also successfully synthesized twelve vascular networks of a complete mouse brain hemisphere suitable for performing whole-brain blood flow simulations. Synthetic arterial and venous networks with microvascular closure allow whole-brain hemodynamic predictions. Simulations across all length scales will potentially illuminate organ-wide supply and metabolic functions that are inaccessible to models reconstructed from image data with limited spatial coverage.
多光子成像和血管重建算法的最新进展增加了用于统计分析和血流动力学模拟的脑血管循环数据量。实验观察为毛细血管网络拓扑提供了基本见解,但主要是在通常覆盖一小部分皮质表面(小于2%)的狭窄视野内。相比之下,更高分辨率的成像方式,如计算机断层扫描(CT)或磁共振成像(MRI),具有全脑覆盖范围,但只能捕捉较大的血管,而忽略了微观的毛细血管床。为了整合通过不同神经成像方式在多个长度尺度上获取的数据,并使全脑宏观信息与微观多光子数据相协调,我们开发了一种用于合成整个脑循环中血流动力学等效血管网络的方法。这种计算方法旨在帮助量化整个大脑的脑血流和代谢模式。在第一部分中,我们描述了图像引导生成合成血管网络的数学框架,该网络覆盖从 Willis 环到软脑膜表面网络再回到静脉窦的大脑大动脉。在第二部分中,我们介绍了创建模拟真实毛细血管床的微循环闭合的新程序。我们展示了我们合成合成血管网络的能力,其形态计量学与来自三个独立的先进成像实验室使用不同图像采集和重建协议的经验网络图形相匹配。我们还成功合成了适合进行全脑血流模拟的完整小鼠脑半球的十二个血管网络。具有微血管闭合的合成动脉和静脉网络允许进行全脑血流动力学预测。跨所有长度尺度的模拟可能会揭示从具有有限空间覆盖范围的图像数据重建的模型无法获得的全器官供应和代谢功能。