Suppr超能文献

小电导机械敏感性通道的门控和失活:连续介质力学研究。

Gating and inactivation of mechanosensitive channels of small conductance: A continuum mechanics study.

机构信息

School of Chemical Engineering, Shaanxi Institute of Energy and Chemical Engineering, Northwest University, Xi'an, Xi'an 710069, PR China; State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Xi'an 710049, PR China.

Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

J Mech Behav Biomed Mater. 2019 Feb;90:502-514. doi: 10.1016/j.jmbbm.2018.10.040. Epub 2018 Nov 2.

Abstract

Mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) serve as a paradigm for understanding the gating behaviors of the MscS family of ion channels. In this work, we develop a continuum mechanics framework to explore the conformational states of MscS during the gating transition. A complete gating transition trajectory from the closed to the open state along with partially open intermediates is obtained, and the open structure is close to the available structural model from crystallographic studies. The computational efficiency of the modeling framework makes it possible to explore the roles of various structural elements (e.g., loops that connect transmembrane helices) and specific interactions in the gating transition. It is observed that removing either the Asp62-Arg131 salt bridge or the Phe68-Leu111 non-polar interaction leads to essentially non-conducting structures even with a membrane tension close to the lysis limit. The loop connecting TM2 (the second transmembrane helix) and TM3 is found to be essential for force transmission during gating, while the loop connecting TM1 and TM2 does not make any major contribution. Based on the different structural evolutions observed when the TM3 kink is treated as a loop or a helical segment, we propose that the helical propensity of the kink plays a central role in inactivation; i.e., under prolonged sub-threshold membrane tension, transition of the initially flexible loop to a helical segment in TM3 may lead to MscS inactivation. Finally, the gating transition of MscS under different transmembrane voltages is explored and found to be essentially voltage independent. Collectively, results from the current continuum mechanics analysis provide further insights into the gating transition of MscS at structural and physical levels, and specific predictions are proposed for further experimental investigations.

摘要

大肠杆菌(Escherichia coli)中的机械敏感小电导通道(MscS)可作为理解 MscS 家族离子通道门控行为的范例。在这项工作中,我们开发了一种连续力学框架来探索 MscS 在门控转变过程中的构象状态。获得了从关闭状态到打开状态的完整门控转变轨迹以及部分打开的中间体,并且打开结构与晶体学研究的可用结构模型接近。建模框架的计算效率使其能够探索各种结构元素(例如,连接跨膜螺旋的环)和特定相互作用在门控转变中的作用。观察到,即使在接近溶胀极限的膜张力下,去除 Asp62-Arg131 盐桥或 Phe68-Leu111 非极性相互作用,也会导致基本上不导电的结构。连接 TM2(第二个跨膜螺旋)和 TM3 的环被发现对于门控过程中的力传递至关重要,而连接 TM1 和 TM2 的环则没有做出任何重大贡献。基于 TM3 拐点被视为环或螺旋段时观察到的不同结构演变,我们提出拐点的螺旋倾向在失活中起核心作用;即在延长的亚阈值膜张力下,最初灵活的环向 TM3 中螺旋段的转变可能导致 MscS 失活。最后,还研究了不同跨膜电压下 MscS 的门控转变,发现其基本上与电压无关。总体而言,当前连续力学分析的结果提供了在结构和物理水平上对 MscS 门控转变的进一步深入了解,并为进一步的实验研究提出了具体的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验