Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States.
Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.
Elife. 2023 Jan 30;12:e81445. doi: 10.7554/eLife.81445.
The force-from-lipids hypothesis of cellular mechanosensation posits that membrane channels open and close in response to changes in the physical state of the lipid bilayer, induced for example by lateral tension. Here, we investigate the molecular basis for this transduction mechanism by studying the mechanosensitive ion channel MscS from Escherichia coli and its eukaryotic homolog MSL1 from Arabidopsis thaliana. First, we use single-particle cryo-electron microscopy to determine the structure of a novel open conformation of wild-type MscS, stabilized in a thinned lipid nanodisc. Compared with the closed state, the structure shows a reconfiguration of helices TM1, TM2, and TM3a, and widening of the central pore. Based on these structures, we examined how the morphology of the membrane is altered upon gating, using molecular dynamics simulations. The simulations reveal that closed-state MscS causes drastic protrusions in the inner leaflet of the lipid bilayer, both in the absence and presence of lateral tension, and for different lipid compositions. These deformations arise to provide adequate solvation to hydrophobic crevices under the TM1-TM2 hairpin, and clearly reflect a high-energy conformation for the membrane, particularly under tension. Strikingly, these protrusions are largely eradicated upon channel opening. An analogous computational study of open and closed MSL1 recapitulates these findings. The gating equilibrium of MscS channels thus appears to be dictated by opposing conformational preferences, namely those of the lipid membrane and of the protein structure. We propose a membrane deformation model of mechanosensation, which posits that tension shifts the gating equilibrium towards the conductive state not because it alters the mode in which channel and lipids interact, but because it increases the energetic cost of the morphological perturbations in the membrane required by the closed state.
细胞膜力学感知的脂质力假说认为,膜通道会在脂质双层物理状态发生变化时开启和关闭,例如在侧向张力作用下。在这里,我们通过研究大肠杆菌的机械敏感离子通道 MscS 及其真核同源物拟南芥 MSL1,来研究这种转导机制的分子基础。首先,我们使用单颗粒冷冻电子显微镜来确定新型野生型 MscS 的开放构象的结构,该构象稳定在变薄的脂质纳米盘中。与关闭状态相比,该结构显示 TM1、TM2 和 TM3a 螺旋的重新配置,以及中央孔的变宽。基于这些结构,我们使用分子动力学模拟研究了门控时膜的形态如何发生变化。模拟表明,关闭状态的 MscS 在不存在和存在侧向张力以及不同的脂质组成时,在内膜小叶中引起脂质双层的剧烈突起,无论是在关闭状态还是在关闭状态下。这些变形的产生是为了在 TM1-TM2 发夹下方的疏水区提供足够的溶剂化作用,并且清楚地反映了膜的高能构象,特别是在张力下。引人注目的是,这些突起在通道打开时基本上被消除。对开放和关闭的 MSL1 的类似计算研究再现了这些发现。因此,MscS 通道的门控平衡似乎由相反的构象偏好决定,即膜和蛋白质结构的构象偏好。我们提出了一种机械感觉的膜变形模型,该模型假设张力将门控平衡推向导电状态不是因为它改变了通道和脂质相互作用的方式,而是因为它增加了膜中关闭状态所需的形态扰动的能量成本。