Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D-69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany.
Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D-69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany.
Biomaterials. 2019 Feb;192:171-178. doi: 10.1016/j.biomaterials.2018.10.042. Epub 2018 Nov 3.
Understanding the biological impact of strategies for protein immobilization onto bioactive surfaces is crucial for the design of biomimetic materials. A common strategy used to immobilize or label recombinant proteins is to exploit the Ni-mediated interaction of nitrilotriacetic acid (NTA) with the hexahistidine tag (His-tag) present on recombinant proteins. While this method ensures a controlled orientation and functionality of the protein, the kinetically labile nature of the bond ensures only its weak immobilization onto the surface. Recently, it has been shown that the oxidation of Co to Co greatly stabilizes the bond between NTA and the His-tagged proteins, making it inert to ligand exchange and resistant to chelators. This approach not only has the potential to improve the quality of biomimetic material functionalization and molecule labeling but could also affect cellular mechanical responses for which the mechanical strength of the protein-surface bond is crucial. Here, we compared gold (Au) nanopatterned polyacrylamide (PAA) hydrogels functionalized with E-cadherin via Co with those functionalized via Ni for studying adhesion-mediated responses in keratinocytes. We show that keratinocytes develop higher and a broader range of adhesion forces, leading to extended cell spreading and colony organization on Co vs. Ni. This work uniquely shows that stabilizing the NTA/His-tag bond via Co for protein immobilization significantly impacts cellular phenotype on biomimetic materials by impacting cell signaling.
了解将蛋白质固定在生物活性表面上的策略对仿生材料的设计具有重要意义。一种常用的固定或标记重组蛋白的策略是利用亚氨基二乙酸(NTA)与重组蛋白上存在的六组氨酸标签(His-tag)之间的镍介导相互作用。虽然这种方法确保了蛋白质的受控取向和功能,但键的动力学不稳定性质仅确保了其在表面上的弱固定。最近,已经表明 Co 的氧化大大稳定了 NTA 和 His 标记的蛋白质之间的键,使其对配体交换惰性且对螯合剂具有抗性。这种方法不仅有可能改善仿生材料功能化和分子标记的质量,而且还可能影响细胞机械响应,其中蛋白质-表面键的机械强度至关重要。在这里,我们比较了通过 Co 功能化的与通过 Ni 功能化的金(Au)纳米图案化聚丙烯酰胺(PAA)水凝胶,用于研究角质形成细胞中的粘附介导的响应。我们表明,角质形成细胞形成更高和更宽范围的粘附力,导致在 Co 上比在 Ni 上细胞扩展和集落组织的扩展。这项工作独特地表明,通过 Co 稳定 NTA/His-tag 键用于蛋白质固定会通过影响细胞信号传导显著影响仿生材料上的细胞表型。