Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China; CAS Key Laboratory of Low-Coal Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China.
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
J Colloid Interface Sci. 2019 Mar 1;537:366-374. doi: 10.1016/j.jcis.2018.11.038. Epub 2018 Nov 12.
Twisted PdCu nanochains are synthesized successfully via a staged thermal treatment route, offering rich twin boundaries as catalytic "active sites" and modified electronic effects. Toward formic acid oxidation, the twisted PdCu nanochains hold the highest catalytic peak current density (1108.2 mA mg) over previous reported PdCu alloy catalysts, and also much higher catalytic activity and durability comparing with Pd nanochains and commercial Pd/C. The catalytic enhancement mechanism to PdCu nanochains is proposed and discussed. Additionally, we found that the formation of PdCu nanochains follows a typical anisotropic growth approach, and the multiple steps of staged thermal treatment route displays a vital role in fabricating the unique PdCu nanochains while the introduced Cu precursors might affect the reduction rate of Pd species and act as deposition or nucleation sites for twisted structure in terms of rich twin boundaries. This work describes an efficient, low-Pd loading catalyst for electrooxidation of formic acid, and also demonstrates a universal method to fabricate other defect-rich catalysts for broad applications in energy conversion and storage systems and sensing devices.
扭曲的 PdCu 纳米链通过分段热处理路线成功合成,提供了丰富的孪晶界作为催化“活性位点”和改进的电子效应。在甲酸氧化方面,扭曲的 PdCu 纳米链在以前报道的 PdCu 合金催化剂中具有最高的催化峰电流密度(1108.2 mA mg),与 Pd 纳米链和商业 Pd/C 相比,其催化活性和耐久性也更高。提出并讨论了 PdCu 纳米链的催化增强机制。此外,我们发现 PdCu 纳米链的形成遵循典型的各向异性生长方法,分段热处理路线的多个步骤在制备独特的 PdCu 纳米链方面起着至关重要的作用,而引入的 Cu 前体可能会影响 Pd 物种的还原率,并作为富孪晶界扭曲结构的沉积或成核位点。这项工作描述了一种用于甲酸电氧化的高效、低 Pd 负载催化剂,并展示了一种通用的方法来制备其他富含缺陷的催化剂,以广泛应用于能量转换和存储系统以及传感设备。