Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
Antimicrob Agents Chemother. 2019 Jan 29;63(2). doi: 10.1128/AAC.02366-18. Print 2019 Feb.
We investigated the epidemiology and resistance mechanisms of ampicillin-sulbactam-nonsusceptible , focusing on the role of the TEM-1 β-lactamase. We collected all nonduplicate clinical isolates at 10 Japanese hospitals during December 2014 and examined their antimicrobial susceptibility, β-lactamases, TEM-1 transferability, TEM-1 β-lactamase activity, outer membrane protein profile, membrane permeability, and clonal genotypes. Among the 329 isolates collected, 95 were ampicillin-sulbactam nonsusceptible. Of these ampicillin-sulbactam-nonsusceptible isolates, β-lactamases conferring resistance to sulbactam, such as AmpC, were present in 33%. Hyperproduction of sulbactam-susceptible β-lactamases, TEMs with a strong promoter, were rare (5%). The remaining 59 isolates (62%) had only sulbactam-susceptible β-lactamases, including TEM-1 with a wild-type promoter ( = 28), CTX-Ms ( = 13), or both ( = 17). All 45 transconjugants from 96 donors with TEM-1 had higher ampicillin-sulbactam MICs (4 to 96 mg/liter) than the recipient (2 mg/liter). In donors with only TEM-1, TEM-1 activity correlated with the 50% inhibitory concentration of sulbactam and ampicillin-sulbactam MICs. The decreased membrane permeation of sulbactam was associated with an increased ampicillin-sulbactam MIC. The reduced permeation was partly attributable to deficient outer membrane proteins, which were observed in 57% of the ampicillin-sulbactam-nonsusceptible isolates with only TEM-1 and a wild-type promoter. Sequence type 131 (ST131) was the most common clonal type (52%). TEM-1 with a wild-type promoter primarily contributed to ampicillin-sulbactam nonsusceptibility in , with the partial support of other mechanisms, such as reduced permeation. Conjugative TEM-1 and the clonal spread of ST131 may contribute to the prevalence of Japanese ampicillin-sulbactam-nonsusceptible isolates.
我们研究了氨苄西林-舒巴坦不敏感的流行病学和耐药机制,重点关注 TEM-1 β-内酰胺酶的作用。我们在 2014 年 12 月从日本的 10 家医院收集了所有非重复的临床分离株,并检查了它们的抗菌药物敏感性、β-内酰胺酶、TEM-1 的可转移性、TEM-1 β-内酰胺酶活性、外膜蛋白谱、膜通透性和克隆基因型。在收集的 329 株分离株中,95 株对氨苄西林-舒巴坦不敏感。在这些对氨苄西林-舒巴坦不敏感的分离株中,对舒巴坦具有耐药性的β-内酰胺酶,如 AmpC,存在于 33%的菌株中。舒巴坦敏感β-内酰胺酶的过度产生,如 TEMs,其强启动子很少见(5%)。其余 59 株(62%)仅具有舒巴坦敏感的β-内酰胺酶,包括野生型启动子的 TEM-1(=28)、CTX-Ms(=13)或两者兼有(=17)。从 96 个供体的 45 个转导子中,所有带有 TEM-1 的供体的氨苄西林-舒巴坦 MIC 值(4 至 96 毫克/升)均高于受体(2 毫克/升)。在只有 TEM-1 的供体中,TEM-1 活性与舒巴坦和氨苄西林-舒巴坦 MIC 的 50%抑制浓度相关。舒巴坦的膜通透性降低与氨苄西林-舒巴坦 MIC 值升高有关。这种通透性的降低部分归因于外膜蛋白的缺乏,在只有 TEM-1 和野生型启动子的 57%的氨苄西林-舒巴坦不敏感分离株中观察到了这种情况。ST131(ST131)是最常见的克隆型(52%)。TEM-1 与野生型启动子主要导致了日本的氨苄西林-舒巴坦不敏感分离株,同时也有其他机制的部分支持,如通透性降低。可接合的 TEM-1 和 ST131 的克隆传播可能导致日本氨苄西林-舒巴坦不敏感分离株的流行。