Department of Chemistry, Kavli Energy NanoSciences Institute at Berkeley, and Berkeley Global Science Institute, University of California-Berkeley, Berkeley, California, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Chem. 2019 Feb;11(2):170-176. doi: 10.1038/s41557-018-0171-z. Epub 2018 Nov 19.
It remains difficult to understand the surface of solid acid catalysts at the molecular level, despite their importance for industrial catalytic applications. A sulfated zirconium-based metal-organic framework, MOF-808-SO, was previously shown to be a strong solid Brønsted acid material. In this report, we probe the origin of its acidity through an array of spectroscopic, crystallographic and computational characterization techniques. The strongest Brønsted acid site is shown to consist of a specific arrangement of adsorbed water and sulfate moieties on the zirconium clusters. When a water molecule adsorbs to one zirconium atom, it participates in a hydrogen bond with a sulfate moiety that is chelated to a neighbouring zirconium atom; this motif, in turn, results in the presence of a strongly acidic proton. On dehydration, the material loses its acidity. The hydrated sulfated MOF exhibits a good catalytic performance for the dimerization of isobutene (2-methyl-1-propene), and achieves a 100% selectivity for C8 products with a good conversion efficiency.
尽管固体酸催化剂对于工业催化应用非常重要,但要在分子水平上理解它们的表面仍然具有挑战性。一种基于硫酸锆的金属-有机骨架 MOF-808-SO,此前被证明是一种强固体布朗斯台德酸材料。在本报告中,我们通过一系列光谱、晶体学和计算表征技术来探究其酸性的起源。研究表明,最强的布朗斯台德酸位是由吸附在锆簇上的特定排列的吸附水和硫酸基团组成的。当一个水分子吸附到一个锆原子上时,它与螯合在相邻锆原子上的硫酸基团形成氢键;这种结构继而导致存在强酸性质子。在脱水过程中,该材料失去其酸性。水合硫酸化 MOF 对异丁烯(2-甲基-1-丙烯)的二聚化表现出良好的催化性能,对 C8 产物具有 100%的选择性和良好的转化率。