Beattie Nathaniel R, Pioso Brittany J, Sidlo Andrew M, Keul Nicholas D, Wood Zachary A
Department of Biochemistry & Molecular Biology , University of Georgia , Athens , Georgia 30602 , United States.
Biochemistry. 2018 Dec 18;57(50):6848-6859. doi: 10.1021/acs.biochem.8b00497. Epub 2018 Nov 30.
Human UDP-glucose dehydrogenase (hUGDH) oxidizes UDP-glucose to UDP-glucuronic acid, an essential substrate in the phase II metabolism of drugs. The activity of hUGDH is regulated by the conformation of a buried allosteric switch (T131 loop/α6 helix). Substrate binding induces the allosteric switch to slowly isomerize from an inactive E* conformation to the active E state, which can be observed as enzyme hysteresis. When the feedback inhibitor UDP-xylose binds, the allosteric switch and surrounding residues in the protein core repack, converting the hexamer into an inactive, horseshoe-shaped complex (E). This allosteric transition is facilitated by large cavities and declivities in the protein core that provide the space required to accommodate the alternate packing arrangements. Here, we have used the A104L substitution to fill a cavity in the E state and sterically prevent repacking of the core into the E state. Steady state analysis shows that hUGDH binds UDP-xylose with lower affinity and that the inhibition is no longer cooperative. This means that the allosteric transition to the high-UDP-xylose affinity E state is blocked by the substitution. The crystal structures of hUGDH show that the allosteric switch still adopts the E and E* states, albeit with a more rigid protein core. However, the progress curves of hUGDH do not show hysteresis, which suggests that the E* and E states are now in rapid equilibrium. Our data suggest that hysteresis in native hUGDH originates from the conformational entropy of the E* state protein core.
人尿苷二磷酸葡萄糖脱氢酶(hUGDH)将尿苷二磷酸葡萄糖氧化为尿苷二磷酸葡萄糖醛酸,后者是药物Ⅱ相代谢中的一种必需底物。hUGDH的活性受一个埋藏的变构开关(T131环/α6螺旋)构象的调节。底物结合诱导变构开关从无活性的E构象缓慢异构化为活性E状态,这可表现为酶滞后现象。当反馈抑制剂尿苷二磷酸木糖结合时,变构开关和蛋白质核心中的周围残基重新排列,将六聚体转化为无活性的马蹄形复合物(E)。蛋白质核心中的大腔和斜面促进了这种变构转变,为容纳交替的堆积排列提供了所需的空间。在这里,我们利用A104L取代填充E状态下的一个腔,并在空间上阻止核心重新排列成E状态。稳态分析表明,hUGDH与尿苷二磷酸木糖的结合亲和力较低,且抑制作用不再具有协同性。这意味着向高尿苷二磷酸木糖亲和力E状态的变构转变被该取代所阻断。hUGDH的晶体结构表明,变构开关仍采用E和E状态,尽管蛋白质核心更刚性。然而,hUGDH的进程曲线未显示滞后现象,这表明E和E状态现在处于快速平衡。我们的数据表明,天然hUGDH中的滞后现象源于E状态蛋白质核心的构象熵。