Leysen J E, Gommeren W, Janssen P F, Van Gompel P, Janssen P A
Department of Biochemical pharmacology, Janssen Research Foundation, Beerse, Belgium.
Psychopharmacol Ser. 1988;5:12-26. doi: 10.1007/978-3-642-73280-5_2.
The advent of receptor binding techniques has provided new ways of studying the mechanism of action of drugs. In vitro radioligand binding is now currently applied to investigate the specificity or multiple action of compounds. By using the same technique, the binding affinity of a drug can be measured for a variety of neurotransmitter, drug, peptide and ion channel receptor binding sites, providing the drug's receptor binding profile (LEYSEN et al. 1981; LEYSEN 1984). However, in vitro receptor binding is only the initial step in the investigation of drug-receptor interactions. Investigations in vivo are required to allow evaluation of how and where a drug acts. In fact, the study of drug-receptor interactions comprises three main stages: (a) in vitro radioligand receptor binding; (b) in vivo receptor binding, providing information on the accessibility of the drugs to the receptors localized in various central and peripheral tissues, on the drug potency for occupying various receptors, on the duration of receptor occupation and on the relationship between the degree of receptor occupation and pharmacological effects; and (c) the study of receptor regulation: the effect of chronic drug treatment on receptor alterations compared with alterations in functional responses in vivo. In this article, we will illustrate the three stages of investigation of receptor interactions and discuss the relevance and importance of the findings, using as examples three drugs known in psychopharmacological research: (a) the neuroleptic haloperidol, a prototype of a dopamine D2 antagonist: (b) Setoperone, a potential antipsychotic agent with very potent serotonin S2 and moderate D2 antagonistic activity (CEULEMANS et al. 1985; LEYSEN et al. 1986); and (c) ritanserin, a potent and long-acting S2 antagonist (LEYSEN et al. 1985), which has revealed therapeutic activity in dysthymia and negative symptoms of schizophrenia (REYNTJENS et al. 1986; GELDERS et al. 1986). Particular attention will be paid to the problem of receptor regulation. We challenge the general applicability of the receptor regulation theory, which states that persistent receptor stimulation causes desensitisation and receptor downregulation, whereas chronic deprivation of receptor stimulation leads to supersensitivity and receptor upregulation. Recent research has revealed that the theory does not hold for S2 receptor alterations, which were found to downregulate following chronic receptor blockade.
受体结合技术的出现为研究药物作用机制提供了新方法。目前,体外放射性配体结合技术被用于研究化合物的特异性或多重作用。通过使用相同技术,可以测量药物对多种神经递质、药物、肽和离子通道受体结合位点的结合亲和力,从而得出药物的受体结合谱(LEYSEN等人,1981年;LEYSEN,1984年)。然而,体外受体结合只是药物-受体相互作用研究的第一步。需要进行体内研究,以便评估药物的作用方式和作用部位。事实上,药物-受体相互作用的研究包括三个主要阶段:(a)体外放射性配体受体结合;(b)体内受体结合,提供关于药物进入位于各种中枢和外周组织中的受体的可及性、药物占据各种受体的效力、受体占据的持续时间以及受体占据程度与药理效应之间关系的信息;(c)受体调节研究:与体内功能反应的改变相比,长期药物治疗对受体改变的影响。在本文中,我们将举例说明三种精神药理学研究中已知的药物,阐述受体相互作用研究的三个阶段,并讨论研究结果的相关性和重要性:(a)抗精神病药物氟哌啶醇,多巴胺D2拮抗剂的原型;(b)舍托哌隆,一种具有非常强的5-羟色胺S2和中等D2拮抗活性的潜在抗精神病药物(CEULEMANS等人,1985年;LEYSEN等人,1986年);(c)利坦色林,一种强效长效的S2拮抗剂(LEYSEN等人,1985年),已显示出对心境恶劣和精神分裂症阴性症状的治疗活性(REYNTJENS等人,1986年;GELDERS等人,1986年)。我们将特别关注受体调节问题。我们对受体调节理论的普遍适用性提出质疑,该理论认为持续的受体刺激会导致脱敏和受体下调,而长期剥夺受体刺激则会导致超敏反应和受体上调。最近的研究表明,该理论不适用于S2受体改变,因为发现长期受体阻断后S2受体会下调。