Suppr超能文献

季节性调节硅藻基盐度传递函数的预测能力。

Seasonality modulates the predictive skills of diatom based salinity transfer functions.

机构信息

Palaeoecology, Department of Physical Geography, Faculty of Geosciences, Utrecht University, Willem C. van Unnikgebouw, Utrecht, The Netherlands.

出版信息

PLoS One. 2018 Nov 20;13(11):e0199343. doi: 10.1371/journal.pone.0199343. eCollection 2018.

Abstract

The value of diatoms as bioindicators in contemporary and palaeolimnological studies through transfer function development has increased in the last decades. While such models represent a tremendous advance in (palaeo) ecology, they leave behind important sources of uncertainties that are often ignored. In the present study we tackle two of the most important sources of uncertainty in the development of diatom salinity inference models: the effect of secondary variables associated to seasonality and the comparison of conventional cross-validation methods with a validation based on independent datasets. Samples (diatoms and environmental variables) were taken in spring, summer and autumn in the freshwater and brackish ditches of the province of North Holland in 1993. Different locations of the same province were sampled again in 2008-2010 to validate the models. We found that the abundance of the dominant species significantly changed between the seasons, leading to inconsistent estimates of species optima and tolerances. A model covering intra-annual variability (all seasons combined) provides averages of species optima and tolerances, reduces the effect of secondary variables due to the seasonality effects, thus providing the strongest relationship between salinity and diatom species. In addition, the ¨all-season¨ model also reduces the edge effects usually found in all unimodal-based calibration methods. While based on cross-validation all four models seem to perform relatively well, a validation with an independent dataset emphasizes the importance of using models covering intra-annual variability to perform realistic reconstructions.

摘要

在过去几十年中,通过开发传递函数,硅藻作为当代和古湖沼学研究中的生物指标的价值不断增加。虽然这些模型代表了(古)生态学的巨大进步,但它们忽略了重要的不确定性来源。在本研究中,我们解决了开发硅藻盐度推断模型中两个最重要的不确定性来源:与季节性相关的次要变量的影响,以及常规交叉验证方法与基于独立数据集的验证的比较。1993 年,在荷兰北荷兰省的淡水和微咸沟渠中,在春季、夏季和秋季采集了样本(硅藻和环境变量)。2008-2010 年,再次在该省的不同地点采样,以验证模型。我们发现,优势种的丰度在季节之间发生了显著变化,导致物种最适值和耐受值的估计不一致。一个涵盖年内变异性(所有季节组合)的模型提供了物种最适值和耐受值的平均值,减少了季节性影响导致的次要变量的影响,从而提供了盐度与硅藻物种之间最强的关系。此外,“全季”模型还减少了通常在所有基于单峰的校准方法中发现的边缘效应。虽然基于交叉验证,所有四个模型似乎都表现相对较好,但使用独立数据集进行验证强调了使用涵盖年内变异性的模型进行现实重建的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ddf/6245675/597128a6598c/pone.0199343.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验